Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1278-1284.DOI: 10.16258/j.cnki.1674-5906.2022.06.025
• Reviews • Previous Articles
SHU Yang1,2(), CHEN Kui1, LI Hang3, WEI Jiangsheng3, ZHAO Pengwu1,2, ZHOU Mei1,2,*(
)
Received:
2022-03-09
Online:
2022-06-18
Published:
2022-07-29
Contact:
ZHOU Mei
舒洋1,2(), 陈魁1, 李航3, 魏江生3, 赵鹏武1,2, 周梅1,2,*(
)
通讯作者:
周梅
作者简介:
舒洋(1988年生),男,实验师,博士,主要从事森林生态与森林防火研究。E-mail: shuyang2018@imau.edu.cn
基金资助:
CLC Number:
SHU Yang, CHEN Kui, LI Hang, WEI Jiangsheng, ZHAO Pengwu, ZHOU Mei. Research Progress on the Effects of Forest Fire Disturbance on Soil Carbon Release in High-latitude Permafrost Regions[J]. Ecology and Environment, 2022, 31(6): 1278-1284.
舒洋, 陈魁, 李航, 魏江生, 赵鹏武, 周梅. 高纬度冻土区林火干扰对土壤碳释放影响研究进展[J]. 生态环境学报, 2022, 31(6): 1278-1284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.025
[1] | AMIRO B D, MACPHERSON J I, DESJARDINS R L, 1999. BOREAS flight measurements of forest fire Effects on carbon dioxide and energy fluxes[J]. Agricultural and Forest Meteorology, 96(4): 199-208. |
[2] | AMIRO B D, MACPHERSON J I, DESJARDINS R L, et al., 2003. Post-fire carbon dioxide fluxes in the western Canadian boreal forest: evidence from towers, airernaft and remote sensing[J]. Agricultural and Forest Meteorology, 115(1): 91-107. |
[3] | BALSHI M S, MCGUIRB A D, DUFFY P, et al., 2009. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach[J]. Global Change Biology, 15(3): 578-600. |
[4] | BEILMAN D W, 2001. Plant community and diversity change due to localized permafrost dynamics in bogs of western Canada[J]. Canadian Journal of Botany, 79(8): 983-993. |
[5] | BIZZARI L E, COLLINS C D, BRUDVIG L A, et al., 2015. Historical agriculture and contemporary fire frequency alter soil properties in long leaf pine woodlands[J]. Forest Ecology and Management, 349: 45-54. |
[6] | BURKE R A, ZEPP R G, TARR M A, et al., 1997. Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites[J]. Journal of Geophysical Research: Atmospheres, 102(24): 29289-29300. |
[7] | CAI W H, YANG J, LIU Z H, 2013. Post-fire tree recruitment of a boreal larch forest in Northeast China[J]. Forest Ecology and Management, 307: 20-29. |
[8] | CAMILL P, 1999. Peat accumulation and succession following permafrost thaw in the boreal peatlands of Manitoba, Canada[J]. Ecoscience, 6(4): 592-602. |
[9] | DECONTO R M, GALEOTTI S, PAGANI M, et al., 2012. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 484(7392): 87-91. |
[10] | ELBERLING B, ASKAER L, JORGENSEN C J, et al., 2011. Linking soil O2, CO2, and CH4 concentrations in a wetland soil: implications for CO2 and CH4 fluxes[J]. Environmental Science & Technology, 45(8): 3393-3399. |
[11] | ESTOP-ARAGONES C, COOPER M D A, Fisher J P, et al., 2018. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands[J]. Soil Biology and Biochemistry, 118: 115-129. |
[12] | ESTOP-ARAGONÉS C, KNORR K H, BLODAU C, 2012. Controls on in situ oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen[J]. Journal of Geophysical Research: Biogeosciences, 117(G2): G02002. |
[13] | FISHER J P, ESTOP-ARAGONÉS C, THIERRY A, et al., 2016. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest[J]. Global Change Biology, 22(9): 3127-3140. |
[14] | FLANNIGAN M, STOCKS B, TURETSKY M, et al., 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global Change Biology, 15(3): 549-560. |
[15] | HARDEN J W, KOVEN C D, PING C L, et al., 2012. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 39(15): 1-6. |
[16] | HICKS J A, AWNER G P, KASISCHKE E S, et al., 2003. Post fire response of North American boreal forest net primary productivity analyzed with satellite observations[J]. Global Change Biology, 9(8): 1145-1157. |
[17] | HU T X, SUN L, HU H Q, et al., 2017. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China[J]. PLos One, 12(6): 1-24. |
[18] | JOHANSSON C, POHJOLA V A, JONASSON C, et al., 2011. Multi-decadal changes in snow characteristics in sub-Arctic Sweden[J]. Ambio, 40(6): 566. |
[19] | JOHNSON K D, HARDEN J W, MCGUIRE A D, et al., 2013. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone[J]. Environmental Research Letters, 8(3): 035028. |
[20] | JOHNSTON C E, EWING S A, HARDEN J W, et al., 2014. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence[J]. Environmental Research Letters, 9(8): 085004. |
[21] | JOHNSTONE J F, HOLLINGSWORTH T N, CHAPIN F S, et al., 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest[J]. Global Change Biology, 16(4): 1281-1295. |
[22] | JORGENSON M T, HARDEN J, KANEVSKIY M, et al., 2013. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes[J]. Environmental Research Letters, DOI: 1748-9326/8/3/035017. |
[23] | JORGENSON M T, RACINE C H, WALTERS J C, et al., 2001. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 48(4): 551-579. |
[24] | KASISCHKE E S, TURETSKY M R, KANE E S, 2012. Effects of trees on the burning of organic layers on permafrost terrain[J]. Forest Ecology and Management, 267: 127-133. |
[25] | KATHERINE P, ERIC S K, DANIEL D R, 2000. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alas-a[J]. Canadian Journal of Forest Research, 32(9): 1525-1541. |
[26] | KÖCHY M, HIEDERER R, FREIBAUER A, 2015. Global distribution of soil organic carbon-Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 1(1): 351-365. |
[27] | KUHN M K, LUNDIN E J, GIESLER R, et al., 2018. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands[J]. Scientific Reports, 8(1): 1-7. |
[28] | LASSLOP G, COPPLOA A I, VOULGARAKIS A, et al., 2019. Influence of fire on the carbon cycle and climate[J]. Current Climate Change Reports, 5(2): 112-123. |
[29] | LAURION I, VINCENT W F, MACINTYRE S, et al., 2010. Variability in greenhouse gas emissions from permafrost thaw ponds[J]. Limnology and Oceanography, 55(1): 115-133. |
[30] | LIU X, GUO Y D, HU H Q, et al., 2015. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China[J]. Atmospheric Environment, 122: 454-462. |
[31] | MACK M C, WALKER X J, JOHNSTONE J F, et al., 2021. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees[J]. Science, 372(6539): 280-283. |
[32] | MUNOZ-ROJAS M, ERICKSON T E, MARTINI D, et al., 2016. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems[J]. Ecological Indicators, 63: 14-22. |
[33] | MYERS-SMITH I H, HARDEN J W, WILMKING M, et al., 2008. Wetland succession in a permafrost collapse: Interations between fire and thermokarst[J]. Biogeosciences, 5(5): 1273-1286. |
[34] | OLEFELDT D, GOSWAMI S, GROSSE G, et al., 2016. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 7(1): 1-11. |
[35] | ONEILL K P, KASISCHKE E S, RICHTER D D, 2002. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 32(9): 1525-1541. |
[36] | OSTERKAMP T E, ROMANOVSKY V E, 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska[J]. Permafrost and Periglacial Processes, 10(1): 17-37. |
[37] | PELLEGRINI A F A, AHLSTRÖM A, HOBBIE S E, et al., 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity[J]. Nature, 553(7687): 194-198. |
[38] |
RIBEIRO-KUMARA C, KÖSTER E, AALTONEN H, et al., 2020. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review[J]. Environmental Research, DOI: 10.1016/j.envres.2020.109328.
DOI URL |
[39] |
RIBEIRO-KUMARA C, PUMPANEN J, HEINONSALO J, et al., 2020. Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.135291.
DOI URL |
[40] | ROBINSON S D, MOORE T R, 2000. The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada[J]. Arctic, Antarctic, and Alpine Research, 32(2): 155-166. |
[41] | SCHADEL C, BADER M K F, SCHUUR E A G, et al., 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change, 6(10): 950-953. |
[42] | SCHMIDT M W I, TORN M S, ABIVEN S, et al., 2011. Persistence of soil organic matter as an ecosystem property[J]. Nature, 478(7367): 49-56. |
[43] | SCHUUR E A G, BOCKHEIM J, CANADELL J G, et al., 2008. Vulnerability of permafrost carbon to climate change: lmplications for the global carbon cycle[J]. BioScience, 58(8): 701-714. |
[44] | SONG C, WANG X, MIAO Y, et al., 2014. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China[J]. Science of the Total Environment, 487: 604-610. |
[45] | TURETSKY M R, WIEDER R K, VITT D H, 2002. Boreal peatland C fluxes under varying permafrost regimes[J]. Soil Biology and Biochemistry, 34(7): 907-912. |
[46] | TURETSKY M R, WIEDER R K, VITT D H, et al., 2007. The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes[J]. Global Change Biology, 13(9): 1922-1934. |
[47] | WÜTHRICH C, SCHAUB D, WEBER M, et al., 2002. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland[J]. Catena, 48(3): 201-215. |
[48] | ZOLTAI S C, 1993. Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada[J]. Arctic and Alpine Research, 25(3): 240-246. |
[49] | 胡同欣, 胡海清, 孙龙, 2018. 中度火干扰对兴安落叶松林土壤呼吸的影响[J]. 生态学报, 38(8): 2915-2924. |
HU T X, HU H Q, SUN L, 2018. Effects of moderate fire disturbance on soil respiration in Larix gmelinii forest[J]. Acta Ecology, 38(8): 2915-2924. | |
[50] | 李攀, 2014. 寒温带针叶林火烧迹地土壤温室气体通量研究[D]. 呼和浩特: 内蒙古农业大学. |
LI P, 2014. Study on soil greenhouse gas fluxes in coniferous forest burned areas in cold temperate zone[D]. Hohhot: Inner Mongolia Agricultural University. | |
[51] | 李攀, 周梅, 赵鹏武, 等, 2013. 大兴安岭火烧迹地土壤呼吸及其与水热因子的关系[J]. 生态学杂志, 32(12): 3305-3311. |
LI P, ZHOU M, ZHAO P W, et al., 2013. Soil respiration and its relationship with hydrothermal factors in the burned area of the Daxing'an Mountains[J]. Chinese Journal of Ecology, 32(12): 3305-3311. | |
[52] | 刘霞, 2015. 寒温带冻土区森林-湿地生态系统土壤呼吸及其影响因子研究[D]. 哈尔滨: 东北林业大学. |
LIU X, 2015. Research on soil respiration and its influencing factors of forest-wetland ecosystem in cold temperate permafrost region[D]. Harbin: Northeast Forestry University. | |
[53] | 秦大河, 姚檀栋, 丁永建, 等, 2014. 冰冻圈科学辞典[M]. 北京: 气象出版社. |
QIN D H, YAO T D, DING Y J, et al., 2014. Dictionary of cryosphere science[M]. Beijing: Meteorological Press. | |
[54] | 孙龙, 李远, 赵彬清, 等, 2019. 中度火干扰对帽儿山次生林土壤呼吸组分及土壤微生物生物量的影响[J]. 东北林业大学学报, 47(7): 90-98. |
SUN L, LI Y, ZHAO B Q, et al., 2019. Effects of moderate fire disturbance on soil respiration components and soil microbial biomass of secondary forest in Maoer Mountain[J]. Journal of Northeast Forestry University, 47(7): 90-98. | |
[55] | 王康, 2015. 全球变化条件下地表冻融循环及多年冻土热状态响应研究[D]. 兰州: 兰州大学. |
WANG K, 2015. Research on surface freeze-thaw cycles and thermal response of permafrost under global change conditions[D]. Lanzhou: Lanzhou University. | |
[56] | 王梓璇, 2020. 内蒙古大兴安岭冻土区土壤呼吸对林火干扰与火烧迹地管理的响应[D]. 呼和浩特: 内蒙古农业大学. |
WANG Z X, 2020. Responses of soil respiration to forest fire disturbance and management of burned areas in the Daxinganling permafrost region of Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University. | |
[57] | 魏书精, 罗碧珍, 孙龙, 等, 2013. 森林生态系统土壤呼吸时空异质性及影响因子研究进展[J]. 生态环境学报, 22(4): 689-704. |
WEI S J, LUO B Z, SUN L, et al., 2013. Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: A review[J]. Ecology and Environment Sciences, 22(4): 689-704. | |
[58] | 曾庆博, 2020. 大兴安岭不同冻土带温室气体排放及增温潜势分析[D]. 哈尔滨: 哈尔滨工业大学. |
ZENG Q B, 2020. Analysis of greenhouse gas emissions and warming potential in different permafrost zones of the Daxing'anling Mountains[D]. Harbin: Harbin Institute of Technology. | |
[59] | 张恒, 乔国伟, 张秋良, 2019. 基于小波分析的我国森林草原火灾周期震荡研究[J]. 林业工程学报, 4(2): 139-145. |
ZHANG H, QIAO G W, ZHANG Q L, 2019. Research on periodic oscillation of forest and grassland fire in my country based on wavelet analysis[J]. Journal of Forestry Engineering, 4(2): 139-145. | |
[60] | 朱益平, 石静, 王冲冲, 等, 2020. 火烧强度对苏南地区植被土壤呼吸的影响研究[J]. 森林防火 (1): 27-31. |
ZHU Y P, SHI J, WANG C C, et al., 2020. Effects of fire intensity on vegetation soil respiration in southern Jiangsu[D]. Forest Fire Prevention (1): 27-31. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn