Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1192-1201.DOI: 10.16258/j.cnki.1674-5906.2021.06.010
• Research Articles • Previous Articles Next Articles
WANG Jin1,2(), CHEN Shutao1,2,*(
), DING Sicheng2, ZHANG Miaomiao2, HU Zhenghua2
Received:
2020-12-30
Online:
2021-06-18
Published:
2021-09-10
Contact:
CHEN Shutao
王瑾1,2(), 陈书涛1,2,*(
), 丁司丞2, 张苗苗2, 胡正华2
通讯作者:
陈书涛
作者简介:
王瑾(1997年生),女,硕士研究生,主要研究方向为生态系统碳氮循环。E-mail: 17863205133@163.com
基金资助:
CLC Number:
WANG Jin, CHEN Shutao, DING Sicheng, ZHANG Miaomiao, HU Zhenghua. Effects of the Soil and Climate Factors on the Mean Turnover Times of Soil Organic Carbon[J]. Ecology and Environment, 2021, 30(6): 1192-1201.
王瑾, 陈书涛, 丁司丞, 张苗苗, 胡正华. 土壤和气候因素对土壤有机碳平均周转时间的影响[J]. 生态环境学报, 2021, 30(6): 1192-1201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.010
地点 Sites | 编号 Code | 纬度 Latitude | 经度 Longitude | 海拔 Elevation/m | 气候类型 Climate types | 年降水量 Mean annual precipitation/mm | 年均温度 Mean annual air temperature/℃ | 土地类型 Land use types | 土壤类型 Soil types | 植被类型 Vegetation types |
---|---|---|---|---|---|---|---|---|---|---|
广西南宁 Nanning, Guangxi | NN1 | 23°11'41"N | 108°52'21"E | 104.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 农田 Cropland | 铁铝土 Ferralosols | 玉米 Maize |
广西南宁 Nanning, Guangxi | NN2 | 23°11'14"N | 108°52'00"E | 109.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 森林 Forest | 铁铝土 Ferralosols | 桉树 Eucalyptus |
广西南宁 Nanning, Guangxi | NN3 | 23°11'28"N | 108°52'11"E | 113.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 森林 Forest | 铁铝土 Ferralosols | 松树 Pine |
江苏常州 Changzhou, Jiangsu | CZ1 | 31°34'12"N | 120°02'26"E | 9.5 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 果园 Orchard | 水稻土 Paddy soil | 葡萄 Grape |
江苏常州 Changzhou, Jiangsu | CZ2 | 31°39'23"N | 120°00'53"E | 2.0 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 玉米 Maize |
江苏常州 Changzhou, Jiangsu | CZ3 | 31°34'14"N | 120°02'28"E | 10.0 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 果园 Orchard | 水稻土 Paddy soil | 桃树 Peach |
江苏常州 Changzhou, Jiangsu | CZ4 | 31°34'14"N | 120°02'26"E | 9.3 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏常州 Changzhou, Jiangsu | CZ5 | 31°39'14"N | 120°00'48"E | 0.1 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏宿迁 Suqian, Jiangsu | SQ1 | 33°49'48"N | 118°44'14"E | 13.2 | 温带季风气候 Temperate monsoon climate | 910 | 13.6 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏宿迁 Suqian, Jiangsu | SQ2 | 33°49'47"N | 118°44'14"E | 5.8 | 温带季风气候 Temperate monsoon climate | 910 | 13.6 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
黑龙江牡丹江 Mudanjiang, Heilongjiang | MDJ | 44°24'01"N | 129°22'36"E | 413.0 | 温带季风气候 Temperate monsoon climate | 542 | 4.3 | 农田 Cropland | 黑土 Terra Preta | 南瓜 Pumpin |
Table 1 General situations in the sampling sites
地点 Sites | 编号 Code | 纬度 Latitude | 经度 Longitude | 海拔 Elevation/m | 气候类型 Climate types | 年降水量 Mean annual precipitation/mm | 年均温度 Mean annual air temperature/℃ | 土地类型 Land use types | 土壤类型 Soil types | 植被类型 Vegetation types |
---|---|---|---|---|---|---|---|---|---|---|
广西南宁 Nanning, Guangxi | NN1 | 23°11'41"N | 108°52'21"E | 104.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 农田 Cropland | 铁铝土 Ferralosols | 玉米 Maize |
广西南宁 Nanning, Guangxi | NN2 | 23°11'14"N | 108°52'00"E | 109.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 森林 Forest | 铁铝土 Ferralosols | 桉树 Eucalyptus |
广西南宁 Nanning, Guangxi | NN3 | 23°11'28"N | 108°52'11"E | 113.0 | 亚热带季风气候 Subtropical monsoon climate | 1304.2 | 21.6 | 森林 Forest | 铁铝土 Ferralosols | 松树 Pine |
江苏常州 Changzhou, Jiangsu | CZ1 | 31°34'12"N | 120°02'26"E | 9.5 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 果园 Orchard | 水稻土 Paddy soil | 葡萄 Grape |
江苏常州 Changzhou, Jiangsu | CZ2 | 31°39'23"N | 120°00'53"E | 2.0 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 玉米 Maize |
江苏常州 Changzhou, Jiangsu | CZ3 | 31°34'14"N | 120°02'28"E | 10.0 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 果园 Orchard | 水稻土 Paddy soil | 桃树 Peach |
江苏常州 Changzhou, Jiangsu | CZ4 | 31°34'14"N | 120°02'26"E | 9.3 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏常州 Changzhou, Jiangsu | CZ5 | 31°39'14"N | 120°00'48"E | 0.1 | 亚热带季风气候 Subtropical monsoon climate | 1091.4 | 15.8 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏宿迁 Suqian, Jiangsu | SQ1 | 33°49'48"N | 118°44'14"E | 13.2 | 温带季风气候 Temperate monsoon climate | 910 | 13.6 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
江苏宿迁 Suqian, Jiangsu | SQ2 | 33°49'47"N | 118°44'14"E | 5.8 | 温带季风气候 Temperate monsoon climate | 910 | 13.6 | 农田 Cropland | 水稻土 Paddy soil | 水稻 Rice |
黑龙江牡丹江 Mudanjiang, Heilongjiang | MDJ | 44°24'01"N | 129°22'36"E | 413.0 | 温带季风气候 Temperate monsoon climate | 542 | 4.3 | 农田 Cropland | 黑土 Terra Preta | 南瓜 Pumpin |
Fig. 3 Annual cumulative soil heterotrophic respiration in different treatments The different letters represent the significant (P<0.05) differences between the treatments. The same below
编号 Code | 有机碳含量 Organic carbon content/ (g∙kg-1) | 全氮含量 Total nitrogen content/ (g∙kg-1) | pH | 有效磷含量 Available phosphorus content/ (mg∙kg-1) | 速效钾含量 Available potassium content/ (mg∙kg-1) |
---|---|---|---|---|---|
NN1 | 21.52±0.02d | 1.98±0.08c | 4.45±0.02g | 49.52±1.40bcd | 300.20±151.61bc |
NN2 | 33.78±0.38b | 2.58±0.01b | 4.92±0.06f | 20.00±4.58d | 117.35±18.20d |
NN3 | 34.72±2.62b | 2.28±0.24bc | 5.25±0.03e | 29.27±15.87cd | 137.77±22.97cd |
CZ1 | 17.10±1.00e | 2.00±0.05c | 6.47±0.19d | 110.73±22.81a | 484.48±48.87a |
CZ2 | 11.72±0.68f | 1.33±0.01e | 4.21±0.04h | 82.43±0.74ab | 181.23±25.3cd |
CZ3 | 12.26±0.34f | 1.44±0.04e | 5.25±0.07e | 72.64±27.27ab | 398.25±31.49ab |
CZ4 | 16.95±0.75e | 1.72±0.03de | 6.77±0.06c | 28.96±3.79cd | 173.74±20.15cd |
CZ5 | 17.52±0.32e | 1.97±0.18cd | 5.46±0.07e | 28.28±4.58cd | 203.84±184.43cd |
SQ1 | 14.86±1.24ef | 0.77±0.08f | 7.79±0.06a | 29.18±5.05cd | 155.08±25.48cd |
SQ2 | 25.84±1.76c | 2.36±0.06bc | 7.59±0.04ab | 64.64±10.37bc | 208.22±33.71cd |
MDJ | 39.99±1.39a | 3.38±0.31a | 7.53±0.07b | 87.29±15.87ab | 198.22±2.11c |
Table 2 Soil properties in the sampling sites
编号 Code | 有机碳含量 Organic carbon content/ (g∙kg-1) | 全氮含量 Total nitrogen content/ (g∙kg-1) | pH | 有效磷含量 Available phosphorus content/ (mg∙kg-1) | 速效钾含量 Available potassium content/ (mg∙kg-1) |
---|---|---|---|---|---|
NN1 | 21.52±0.02d | 1.98±0.08c | 4.45±0.02g | 49.52±1.40bcd | 300.20±151.61bc |
NN2 | 33.78±0.38b | 2.58±0.01b | 4.92±0.06f | 20.00±4.58d | 117.35±18.20d |
NN3 | 34.72±2.62b | 2.28±0.24bc | 5.25±0.03e | 29.27±15.87cd | 137.77±22.97cd |
CZ1 | 17.10±1.00e | 2.00±0.05c | 6.47±0.19d | 110.73±22.81a | 484.48±48.87a |
CZ2 | 11.72±0.68f | 1.33±0.01e | 4.21±0.04h | 82.43±0.74ab | 181.23±25.3cd |
CZ3 | 12.26±0.34f | 1.44±0.04e | 5.25±0.07e | 72.64±27.27ab | 398.25±31.49ab |
CZ4 | 16.95±0.75e | 1.72±0.03de | 6.77±0.06c | 28.96±3.79cd | 173.74±20.15cd |
CZ5 | 17.52±0.32e | 1.97±0.18cd | 5.46±0.07e | 28.28±4.58cd | 203.84±184.43cd |
SQ1 | 14.86±1.24ef | 0.77±0.08f | 7.79±0.06a | 29.18±5.05cd | 155.08±25.48cd |
SQ2 | 25.84±1.76c | 2.36±0.06bc | 7.59±0.04ab | 64.64±10.37bc | 208.22±33.71cd |
MDJ | 39.99±1.39a | 3.38±0.31a | 7.53±0.07b | 87.29±15.87ab | 198.22±2.11c |
Fig. 5 Relationship between the mean turnover times of soil organic carbon for the 25% soil moisture and that for the soil moisture in the sampling sites The dotted lines represent that the mean turnover times of organic carbon for the 25% soil moisture are lower than those for the soil moisture in the sampling sites
Fig. 6 Relationships between the mean turnover times of soil organic carbon and the soil organic carbon content and cumulative heterotrophic respiration for the soil moisture in the sampling sites (a and b) and 25% soil moisture (c and d)
Fig. 7 Relationships between the mean turnover times of soil organic carbon and the soil and climate factors for the soil moisture in the sampling sites
[1] |
AMELUNG W, BOSSIO D, DE VRIES W, et al., 2020. Towards a global-scale soil climate mitigation strategy[J]. Nature Communications, 11(1): 5427.
DOI URL |
[2] |
BOWMAN R A, REEDER J D, WIENHOLD B J, 2002. Quantifying laboratory and field variability to assess potential for carbon sequestration[J]. Community Soil Science Plant Analysis, 33(9-10): 1629-1642.
DOI URL |
[3] |
CARVALHAIS N, FORKEL M, KHOMIK M, et al., 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature, 514(7521): 213-217.
DOI URL |
[4] |
DAVIDSON E A, JANSSENS I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 440(7081): 165-173.
DOI URL |
[5] |
DERRIEN D, PLAIN C, COURTY P E, et al., 2014. Does the addition of labile substrate destabilise old soil organic matter?[J]. Soil Biology and Biochemistry, 76: 149-160.
DOI URL |
[6] |
DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al., 2012. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 18(6): 1781-1796.
DOI URL |
[7] |
FOESEL B U. NAGELE V, NAETHER A, et al., 2014. Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils[J]. Environmental Microbiology, 16(3): 658-675.
DOI URL |
[8] |
FRANK D A, PONTES A W, MCFARLANE K J, 2012. Controls on soil organic carbon stocks and turnover among north American ecosystems[J]. Ecosystems, 15(4): 604-615.
DOI URL |
[9] |
GARTEN JR C T, HANSON P J, 2006. Measured forest soil C stocks and estimated turnover times along an elevation gradient[J]. Geoderma, 136(1-2): 342-352.
DOI URL |
[10] |
GIARDINA C P, RYAN M G, 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 404(6780): 858-861.
DOI URL |
[11] |
HOUGHTON R A, 2007. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 35(1): 313-347.
DOI URL |
[12] |
JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al., 2010. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 3(5): 315-322.
DOI URL |
[13] |
JUNG M, REICHSTEIN M, SCHWALM S R, et al., 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature[J]. Nature, 541(7638): 516-520.
DOI URL |
[14] |
KNORR W, PRENTICE I C, HOUSE J I, et al., 2005. Long-term sensitivity of soil carbon turnover to warming[J]. Nature, 433(7023): 298-301.
DOI URL |
[15] |
LEHMANN J, KLEBER M, 2015. The contentious nature of soil organic matter[J]. Nature, 528(7580): 60-68.
DOI URL |
[16] |
LUO Z K, WANG G C, WANG E L, 2019. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate[J]. Nature Communications, 10(1): 3688.
DOI URL |
[17] |
PENDALL E, BRIDGHAM S, HANSON P J, et al., 2004. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models[J]. New Phytologist, 162(2): 311-322.
DOI URL |
[18] |
POSADA J M, SCHUUR E A G, 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests[J]. Oecologia, 165(3): 783-795.
DOI URL |
[19] | SIX J, JASTROW J D, 2002. Organic matter turnover [M]//In: LAL R. (Ed.), Encyclopedia of Soil Science. Marcel Dekker, Monticello, NY: 936-942. |
[20] |
SMITH P, ADAMS J, BEERLING D J, et al., 2019. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals[J]. Annual Review of Environment and Resources, 44(1): 255-286.
DOI URL |
[21] |
TORN M S, TRUMBORE S E, CHADWICK O A, et al., 1997. Mineral control of soil organic carbon storage and turnover[J]. Nature, 389(6647): 170-173.
DOI URL |
[22] |
VARNEY R M, CHADBURN S E, FRIEDLINGSTEIN P, et al., 2020. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming[J]. Nature Communications, 11(1): 5544.
DOI URL |
[23] |
WANG J, SUN J, XIA J, et al., 2018. Soil and vegetation carbon turnover times from tropical to boreal forests[J]. Functional Ecology, 32(1): 71-82.
DOI URL |
[24] |
WANG J, XIA J, ZHOU X, et al., 2019. Evaluating the simulated mean soil carbon transit times by Earth system models using observations[J]. Biogeosciences, 16(4): 917-926.
DOI URL |
[25] |
WATTEL-KOEKKOEK E J W, BUURMAN P, VAN DEN PLICHT J, et al., 2003. Mean residence time of soil organic matter associated with kaolinite and smectite[J]. European Journal of Soil Science, 54(2): 269-279.
DOI URL |
[26] |
YAN Y E, ZHOU X H, JIANG L F, et al., 2017. Effects of carbon turnover time on terrestrial ecosystem carbon storage[J]. Biogeosciences, 14(23): 5441-5454.
DOI URL |
[27] | 程淑兰, 华军, 徐梦, 等, 2018. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 38(23): 8285-8295. |
CHENG S L, HUA J, XU M, et al., 2018. Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review[J]. Acta Ecologica Sinica, 38(23): 8285-8295. | |
[28] | 姜俊, 陆元昌, 秦永胜, 等, 2020. 北京平原地区不同人工林叶片-凋落物-土壤生态化学计量特征[J]. 生态环境学报, 29(4): 702-708. |
LU Y C, QIN Y S, et al., 2020. Ecological stoichiometric characteristics of leaf-litter-soil for four dominant tree species in plain afforestation area, Beijing[J]. Ecology and Environmental Sciences, 29(4): 702-708. | |
[29] | 李燕燕, 刘亮英, 张志坚, 等, 2019. 亚热带红壤区自然恢复草地转换为人工林后对土壤团聚体有机碳周转的影响[J]. 水土保持学报, 33(1): 80-85. |
LI Y Y, LIU L L, ZHANG Z J, et al., 2019. Effects of conversion of degraded grassland into plantations on organic carbon turnover of soil aggregate in subtropical red soil area[J]. Journal of Soil and Water Conservation, 33(1): 80-85. | |
[30] | 刘德燕, 宋长春, 王丽, 等, 2008. 外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J]. 环境科学, 29(12): 3525-3530. |
LIU D Y, SONG C C, WANG L, et al., 2008. Exogenous nitrogen enrichment impact on the carbon mineralization and doc of the freshwater marsh soil[J]. Environmental Science, 29(12): 3525-3530. | |
[31] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科学出版社. |
LU R K, 1999. Method for soil agricultural chemistry analysis[M]. Beijing: Chinese Agricultural Science and Technology Press. | |
[32] | 莫江明, 方运霆, 徐国良, 等, 2005. 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应[J]. 生态学报, 25(4): 682-690. |
MO J M, FANG Y T, XU G L, et al., 2005. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China[J]. Acta Ecologica Sinica, 25(4): 682-690. | |
[33] | 王鹏, 祝丽香, 陈香香, 等, 2018. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响[J]. 植物营养与肥料学报, 24(3): 668-675. |
WANG P, ZHU L X, CHEN X X, et al., 2018. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganisms and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 24(3): 668-675. | |
[34] | 王雪芬, 胡锋, 彭新华, 等, 2012. 长期施肥对红壤不同有机碳库及其周转速率的影响[J]. 土壤学报, 49(5): 954-961. |
WANG X F, HU F, PENG X, et al., 2012. Effects of long-term fertilization on soil organic carbon pools and their turnovers in a red soil[J]. Acta Pedologica Sinica, 49(5): 954-961. | |
[35] | 严毅萍, 曹建华, 杨慧, 等, 2012. 岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响[J]. 水土保持学报, 16(2): 144-149. |
YAN Y P, CAO J H, YANG H, et al., 2012. The impact of different soil types on soil organic carbon pool and turnover in Karst area[J]. Journal of Soil and Water Conservation, 16(2): 144-149. | |
[36] | 周涛, 史培军, 贾根锁, 等, 2010. 中国森林生态系统碳周转时间的空间格局[J]. 中国科学:地球科学, 40(5): 632-644. |
ZHOU T, SHI P J, JIA G S, et al., 2010. Spatial patterns of ecosystem carbon residence time in Chinese forests[J]. Science China Earth Science, 40(5): 632-644. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[3] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[4] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[5] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[6] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[7] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[8] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[9] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[10] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[11] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[12] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[13] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[14] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[15] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn