[1] |
CHEN Z X, LIU J E, QIE X S, et al., 2024. Stratospheric influence on surface ozone pollution in China[J]. Nature Communications, 15(1): 4064-4064.
DOI
PMID
|
[2] |
HAN H, LIU J, SHU L, et al., 2020. Local and synoptic meteorological influences on daily variability of summertime surface ozone in eastern China[J]. Atmospheric Chemistry and Physics, 20(1): 203-222.
|
[3] |
HE C, LU X, WANG H L, et al., 2022. The unexpected high frequency of nocturnal surface ozone enhancement events over China: Characteristics and mechanisms[J]. Atmospheric Chemistry and Physics, 22(23): 15243-15261.
|
[4] |
HU J, LI Y C, ZHAO T L, et al., 2018. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China[J]. Atmospheric Chemistry and Physics, 18(22): 16239-16251.
|
[5] |
KLEIN P, HU X M, XUE M, 2014. Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations[J]. Boundary-Layer Meteorology, 150(1): 107-130.
|
[6] |
LEI S, MIN X, TI J W, et al., 2017. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China[J]. Atmospheric Chemistry & Physics Discussions, 16(24): 15801-15819.
|
[7] |
LI X, REN J Y, HUANG R J, et al., 2023. The aggravation of summertime nocturnal ozone pollution in China and its potential impact on the trend of nitrate aerosols[J]. Geophysical Research Letters, 50(12): e2023GL103242.
|
[8] |
MOGHANIA M, ARCHERA C L, MIRZAKHALILIB A, et al., 2018. The importance of transport to ozone pollution in the U.S. Mid-Atlantic[J]. Atmospheric Environment, 191: 420-431.
|
[9] |
MORRIS G A, FORD B, BERNHARD R, et al., 2010. An evaluation of the interaction of morning residual layer and afternoon mixed layer ozone in Houston using ozonesonde data[J]. Atmospheric Environment, 44(33): 4024-4034.
|
[10] |
SCHNELL J L, PRATHER M J, 2017. Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern north America[J]. Proceedings of the National Academy of Sciences, 114(11): 2854-2859.
|
[11] |
SOUSA S I V, ALVIM-FERRAZ M C M, MARTINS E G, 2011. Identification and origin of nocturnal ozone maxima at urban and rural areas of Northern Portugal - Influence of horizontal transport[J]. Atmospheric Environment, 45(4): 942-956.
|
[12] |
STRODE S, ZIEMKE J, OMAN L, et al., 2019. Global changes in the diurnal cycle of surface ozone[J]. Atmospheric Environment, 199: 323-333.
DOI
|
[13] |
ZHANG B Y, ZHAO X M, ZHANG J B, et al., 2019. Characteristics of peroxyacetyl nitrate pollution during a 2015 winter haze episode in Beijing[J]. Environmental Pollution, 244: 379-387.
DOI
PMID
|
[14] |
盖宸德, 2022. 区域臭氧传输对中国东南沿海高臭氧事件的影响[D]. 福州: 福建师范大学.
|
|
GAI C D, 2022. Impact of regional ozone transport on high ozone episodes in southeast coastal regions of China[D]. Fuzhou: Fujian Normal University.
|
[15] |
何成, 何国文, 刘晨曦, 等, 2023. 广州暖季夜间臭氧增加事件的特征及一次水平输送个例分析[J]. 环境科学学报, 43(1): 76-86.
|
|
HE C, HE G W, LIU C X, et al., 2023. Characteristics of nocturnal ozone enhancement events and a case study of horizontal transport in Guangzhou during warm season[J]. Acta Scientiae Circumstantiae, 43(1): 76-86.
|
[16] |
蒋永成, 2024. 西北太平洋近海台风对我国中东部地区对流层臭氧变化的影响[D]. 南京: 南京信息工程大学.
|
|
JIANG Y C, 2024. The impact of typhoons in the offshore areas of the northwestern Pacific Ocean on tropospheric ozone variations in central and eastern China[D]. Nanjing: Nanjing University of Information Science and Technology.
|
[17] |
林昕, 段焜瑀, 郭弘, 等, 2023. 极端高温形势下福州市臭氧浓度异常升高及影响因素分析[J]. 生态环境学报, 32(2): 320-330.
DOI
|
|
LIN X, DUAN K Y, GUO H, et al., 2023. The causes of the abnormal increase of ozone in Fuzhou city under extreme high temperature[J]. Ecology and Environmental Sciences, 32(2): 320-330.
|
[18] |
李培荣, 肖天贵, 王铭杨, 2019. 基于风廓线雷达对成都地区典型持续性重污染天气的研究[J]. 环境科学学报, 39(12): 4174-4186.
|
|
LI P R, XIAO T G, WANG M Y, 2019. Study on typical continuous heavily polluted weather in Chengdu area based on wind profiler radar[J]. Acta Scientiae Circumstantiae, 39(12): 4174-4186.
|
[19] |
史治辉, 张强, 罗淑贞, 等, 2024. 2019-2022年运城市暖季夜间臭氧增强事件污染特征及驱动因素分析[J]. 环境科学学报, 45(2): 291-305.
|
|
SHI Z H, ZHANG Q, LUO S Z, et al., 2024. Characteristics and drivers of nocturnal ozone enhancement events in the warm season in the city of Yuncheng during 2019-2022[J]. Acta Scientiae Circumstantiae, 45(2): 291-305.
|
[20] |
王宏, 黄金洪, 赵芮, 等, 2024. 2022年9月福建邵武边界层臭氧异常升高的气象成因[J]. 山地气象学报, 48(1): 21-30, 53.
|
|
WANG H, HUANG J H, ZHAO R, et al., 2024. Meteorological causes of boundary-layer ozone surge in September 2022 over Shaowu of Fujian province[J]. Journal of Mountain Meteorology, 48(1): 21-30, 53.
|
[21] |
王宏, 蒋冬升, 谢祖欣, 等, 2018. 福建省近地层臭氧时空分布与超标天气成因[J]. 中低纬山地气象, 42(1): 1-6.
|
|
WANG H, JIANG D S, XIE Z X, et al., 2018. The spatial and temporal distribution and synoptic causes ofsurface layer ozone in Fujian Province[J]. Mid-low Latitude Mountain Meteorology, 42(1): 1-6.
|
[22] |
王宏, 郑秋萍, 洪振宇, 等, 2020a. 福建省沿海地区春季一次近地层O3超标成因分析[J]. 环境科学研究, 33(1): 36-43.
|
|
WANG H, ZHENG Q P, HONG Z Y, et al., 2020. Analysis of a springtime high surface ozone event over Fujian Coastal Areas[J]. Research of Environmental Sciences, 33(1): 36-43.
|
[23] |
王宏, 郑秋萍, 蒋冬升, 等, 2020b. 福州市太阳总辐射变化特征及与PM、O3关系分析[J]. 生态环境学报, 29(4): 771-777.
|
|
WANG H, ZHENG Q P, JIANG D S, et al., 2020. Analysis of the variation characteristics of the total solar radiation and its relation with PM and O3 in Fuzhou[J]. Ecology and Environmental Sciences, 29(4): 771-777.
|
[24] |
解鑫, 邵敏, 刘莹, 等, 2009. 大气挥发性有机物的日变化特征及在臭氧生成中的作用——以广州夏季为例[J]. 环境科学学报, 29(1): 54-62.
|
|
XIE X, SHAO M, LIU Y, et al., 2009. The diurnal variation of ambient VOCs and their role in ozone formation: Case study in summer Guanzhou[J]. Acta Scientiae Circumstantiae, 29(1): 54-62.
|
[25] |
严韬, 蒋悦, 葛非凡, 等, 2024. 福建省近地层臭氧时空分布及重点城市臭氧的气象响应[J]. 海峡科学 (3): 18-23.
|
|
YAN T, JIANG Y, GE F F, et al., 2024. Spatial-temporal distribution of near surface ozone and meteorological response of key cities in Fujian province[J]. Straits Science (3): 18-23.
|
[26] |
杨允凌, 郝巨飞, 杨丽娜, 等, 2020. 一次连续臭氧污染过程的气象条件分析[J]. 干旱气象, 38(3): 448-456.
|
|
YANG Y L, HAO J F, YANG L N, et al., 2020. Analysis of meteorological conditions of a continuous ozone pollution process in Xingtai of Hebei province[J]. Journal of Arid Meteorology, 38(3): 448-456.
|
[27] |
赵采玲, 李耀辉, 柳媛普, 等, 2019. 中国西北地区大气边界层高度变化特征——基于探空资料与ERA-Interim再分析资料[J]. 高原气象, 38(6): 1181-1193.
DOI
|
|
ZHAO C L, LI Y H, LIU Y P, et al., 2019. The variation characteristics of planetary boundary layer height in northwest China: Based on radiosonde and ERA-Interim reanalysis data[J]. Plateau Meteorology, 38(6): 1181-1193.
DOI
|
[28] |
郑秋萍, 李菲, 赵芮, 等, 2023. 福建省PM2.5-O3双高特征与天气形势影响分析[J]. 生态环境学报, 32(8): 1440-1448.
DOI
|
|
ZHENG Q P, LI F, ZHAO R, et al., 2023. Analysis of the characteristics of PM2.5-O3 compound pollution and the impact of synoptic weather patterns in Fujian Province[J]. Ecology and Environmental Sciences, 32(8): 1440-1448.
|
[29] |
中华人民共和国生态环境部, 2024. 2023年中国生态环境状况公报[EB/OL] (2024-06-06) [2024-12-12]. https://www.gov.cn/lianbo/bumen/202406/content_6955727.htm.
|
|
Ministry of Ecological and Environment of the People’s Republic of China, 2024. Bulletin on China’s Ecological Environment Status in 2023[EB/OL] (2024-06-06) [2024-12-12]. https://www.gov.cn/lianbo/bumen/202406/content_6955727.htm.
|
[30] |
中华人民共和国环境保护部,2012. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社: 3.
|
|
Ministry of Environmental Protection of the People’s Republic of China,2012. Ambient air quality standards: GB 3095—2012[S]. Beijing: China Environmental Science Press: 3.
|