[1] |
AHMED R R, ABDULLA A I, 2018. Recycling of food waste to produce the plant fertilizer[J]. International Journal of Engineering & Technology, 7(4): 173-178.
|
[2] |
AYILARA M S, OLANREWAJU O S, BABALOLA O O, et al., 2020. Waste management through composting: Challenges and potentials[J]. Sustainability, 12(11): 4456.
|
[3] |
AYITI O E, BABALOLA O O, 2022. Factors influencing soil nitrification process and the effect on environment and health[J]. Frontiers in Sustainable Food Systems, 6: 821994.
|
[4] |
BABAEIC G, PAOLO GIUDICI, 2023. InstanceSHAP: An instance-based estimation approach for Shapley values[J]. Behaviormetrika, 51(1): 425-439.
|
[5] |
BAI L, DENG Y, LI J, et al., 2020. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology, 307: 122941.
|
[6] |
BARBUSIŃSKI K, KALEMBA K, KASPERCZYK D, et al., 2017. Biological methods for odor treatment: A review[J]. Journal of Cleaner Production, 152: 223-241.
|
[7] |
CHEN C, LIU H, YU C M, 2024. Predicting long-term air pollutant concentrations through deep learning-based integration of heterogeneous urban data[J]. Atmospheric Pollution Research, 15(11): 102282.
|
[8] |
GEVAERT C, 2022. Explainable AI for earth observation: A review including societal and regulatory perspectives[J]. International Journal of Applied Earth Observation and Geoinformation, 112: 102869.
|
[9] |
GHAHRAMANI Z, 2015. Probabilistic machine learning and artificial intelligence[J]. Nature, 521(7553): 452-459.
|
[10] |
GUBALI H, ILAHUDE Z, BAHUA M I, et al., 2023. Impact of biological fertilizers based on essential bacterial stimulants on rice growth and production[J]. European of Agriculture and Food Sciences, 5(2): 79-84.
|
[11] |
HE B Y, ZHU X D, CANG Z Z, et al., 2023. Interpretation and prediction of the CO2 sequestration of steel slag by machine learning[J]. Environmental Science & Technology, 57(46): 17940-17949.
|
[12] |
KOVAČIĆ Đ, LONČARIĆ Z, JOVIĆ J, et al., 2022. Digestate management and processing practices: A review[J]. Applied Sciences, 12(18): 9216.
|
[13] |
LI Y C, LIU Y D, YONG X Y, et al., 2020. Odor emission and microbial community succession during biogas residue composting covered with a molecular membrane[J]. Bioresource Technology, 297: 122518.
|
[14] |
LUNDBERG S, LEE S I, 2017. A unified approach to interpreting model predictions[J]. Advances in Neural Information Processing Systems, 30: 4765-4774.
|
[15] |
PAGANS E, FONT X, SÁNCHEZ A, 2007. Coupling composting and biofiltration for ammonia and volatile organic compound removal[J]. Biosystems Engineering, 97(4): 491-500.
|
[16] |
RINCÓN C A, DE GUARDIA A, COUVERT A, et al., 2019. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates[J]. Journal of Environmental Management, 233: 39-53.
DOI
PMID
|
[17] |
RYU H W, CHO K S, LEE T H, et al., 2011. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system[J]. Bioresource Technology, 102(7): 4654-4660.
DOI
PMID
|
[18] |
SALUDES R B, IWABUCHI K, MIYATAKE F, et al., 2008. Characterization of dairy cattle manure/wallboard paper compost mixture[J]. Bioresource Technology, 99(15): 7285-7290.
DOI
PMID
|
[19] |
SONG W F, SHU A P, LIU J A, et al., 2022. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 32(4): 637-648.
|
[20] |
XIE D, GAO M, YANG M, et al., 2021. Re-using ammonium-rich wastewater as a moisture conditioning agent during composting thermophilic period improves composting performance[J]. Bioresource Technology, 332: 125084.
|
[21] |
XIONG J P, ZHUO Q T, SU Y, et al., 2023. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways[J]. Journal of Environmental Management, 345: 118727.
|
[22] |
XU M Y, YANG M, XIE D, et al., 2021. Research trend analysis of composting based on Web of Science database[J]. Environmental Science and Pollution Research, 28(42): 59528-59541.
|
[23] |
XU A K, LI R, CHANG H M, et al., 2022. Artificial neural network (ANN) modeling for the prediction of odor emission rates from landfill working surface[J]. Waste Management, 138: 158-171.
DOI
PMID
|
[24] |
XUE N T, WANG Q H, WU C F, et al., 2010. Enhanced removal of NH3 during composting by a biotrickling filter inoculated with nitrifying bacteria[J]. Biochemical Engineering Journal, 51(1-2): 86-93.
|
[25] |
WANG J J, MA Y L, ZHANG L B, et al., 2018. Deep learning for smart manufacturing: Methods and applications[J]. Journal of Manufacturing Systems, 48(Part C): 144-156.
|
[26] |
WANG Z Z, HU Y S, WANG S, et al., 2023. A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies[J]. Renewable & Sustainable Energy Reviews, 176: 113208.
|
[27] |
WU H, YAN H, QUAN Y, et al., 2018. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management, 222: 409-419.
DOI
PMID
|
[28] |
ZHANG H, SRINIVASAN R, YANG X, et al., 2022. Factors influencing indoor air pollution in buildings using PCA-LMBP neural network: A case study of a university campus[J]. Building and Environment, 225: 109643.
|
[29] |
ZHANG X, MA D C, LÜ J H, et al., 2022. Food waste composting based on patented compost bins: Carbon dioxide and nitrous oxide emissions and the denitrifying community analysis[J]. Bioresource Technology, 346: 126643.
|
[30] |
ZHONG S F, ZHANG K, BAGHERI M, et al., 2021. Machine learning: New ideas and tools in environmental science and engineering[J]. Environmental Science & Technology, 55(19): 12741-12754.
|
[31] |
尚斌, 周谈龙, 董红敏, 等, 2017. 生物过滤法去除死猪堆肥排放臭气效果的中试[J]. 农业工程学报, 33(11): 226-232.
|
|
SHANG B, ZHOU T L, DONG H M, et al., 2017. Pilot scale test on removal effect of odor from pig manure and carcass composting by biofiltration[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(11): 226-232.
|
[32] |
王亮, 2012. 牛粪好氧堆肥中微生物多样性及生产应用研究[D]. 北京: 北京林业大学.
|
|
WANG L, 2012. Manufacture and application of microbial diversity in aerobic composting of cattle manure[D]. Beijing: Beijing Forestry University.
|
[33] |
吴伟霞, 黄彩红, 唐朱睿, 等, 2022. 基于文献计量学的2001-2020堆肥臭气研究进展[J]. 环境工程, 40(11): 211-221.
|
|
WU W X, HUANG C H, TANG Z R, et al., 2022. Research advance on compost odor in 2001-2020 based on bibliometrics[J]. Environmental Engineering, 40(11): 211-221.
|
[34] |
熊骏生, 魏姣皎, 陆倩, 等, 2015. 垃圾堆肥过程恶臭污染及其控制技术研究进展[J]. 杭州师范大学学报(自然科学版), 14(4): 405-411.
|
|
XIONG J S, WEI J J, LU Q, et al., 2015. Odor pollution from waste composting and its control technology: A review[J]. Journal of Hangzhou Normal University (Natural Science Edition), 14(4): 405-411.
|
[35] |
夏湘勤, 席北斗, 黄彩红, 等, 2019. 畜禽粪便堆肥臭气控制研究进展[J]. 环境工程技术学报, 9(6): 649-657.
|
|
XIA X Q, XI B D, HUANG C H, et al., 2019. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology, 9(6): 649-657.
|
[36] |
杨延梅, 刘鸿亮, 杨志峰, 等, 2005. 控制堆肥过程中氮素损失的途径和方法综述[J]. 北京师范大学学报(自然科学版), 41(2): 213-216.
|
|
YANG Y M, LIU H L, YANG Z F, et al., 2005. Methods and techniques in the control of nitrogen loss during the composting: A review[J]. Journal of Beijing Normal University (Natural Science), 41(2): 213-216.
|
[37] |
张昊, 陈芳, 申杰, 等, 2018. 畜禽粪便堆肥产臭与生物除臭的研究进展[J]. 家畜生态学报, 39(1): 84-89.
|
|
ZHANG H, CHEN F, SHEN J, et al., 2018. Research progress on odor emission in composting of livestock and poultry manure and biological deodorization[J]. Acta Ecologae Animalis Domastici, 39(1): 84-89.
|