生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1739-1748.DOI: 10.16258/j.cnki.1674-5906.2025.11.007
梁冬霞1(
), 郜礼阳1, 张风姬2, 周巧仪1, 黄华林1,3, 穆小婷4, 凌彩金1,*(
)
收稿日期:2025-03-25
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:梁冬霞(1997年生),女(壮族),研究实习员,硕士,主要从事茶叶产地安全及环境质量控制研究及技术推广研究。E-mail: liangdx3407@163.com
基金资助:
LIANG Dongxia1(
), GAO Liyang1, ZHANG Fengji2, ZHOU Qiaoyi1, HUANG Hualin1,3, MU Xiaoting4, LING Caijin1,*(
)
Received:2025-03-25
Online:2025-11-18
Published:2025-11-05
摘要:
为探究淹水对茶树(Camellia sinensis L.)茶园红壤土壤养分及微生物群落结构的影响,以经自然降雨淹没的茶园土壤为材料,采用田间试验,以暴雨后不同淹水时间(15、17、19、21 d)的茶园红壤为研究对象,分析淹水对土壤pH值、有机质、碱解性氮、速效钾和有效磷含量的影响,并探究淹水后土壤微生物群落结构和多样性的变化。结果表明,淹水导致茶园土壤pH值升高,而有机质、碱解性氮、速效钾和有效磷的含量降低。茶园土壤淹水后,优势细菌门是变形菌门(Proteobacteria)、酸杆菌门(Acidobacterita)和绿弯菌门(Chloroflexi),优势真菌门是子囊菌门(Ascomycota)、担子菌门(Basidiomycota)。此外,在门水平上,厌氧菌拟杆菌门(Bacteroides)和芽单胞菌门(Gemmatimonadetes)的相对丰度随着淹水时间的延长而增加(p<0.05)。茶园土壤淹水后导致变形菌门(Proteobacteria)的相对丰度增加,而酸杆菌门(Acidobacterita)和绿弯菌门(Chloroflexi)的相对丰度降低。在属水平上,茶园土壤淹水显著增加了有益菌属青霉属(Penicillium)的相对丰度并与土壤pH值呈显著正相关,增加了潜在固氮菌类群中的假丝酵母菌属(Candidatus_Solibacter)的相对丰度并与土壤pH值呈显著负相关。茶园土壤淹水显著提高了土壤pH值,增加了土壤中有益厌氧菌的丰度,但土壤养分含量降低,研究结果对未来突发暴雨天气后茶园的水分管理具有指导意义。
中图分类号:
梁冬霞, 郜礼阳, 张风姬, 周巧仪, 黄华林, 穆小婷, 凌彩金. 淹水对茶园土壤养分和微生物群落结构的影响[J]. 生态环境学报, 2025, 34(11): 1739-1748.
LIANG Dongxia, GAO Liyang, ZHANG Fengji, ZHOU Qiaoyi, HUANG Hualin, MU Xiaoting, LING Caijin. Effects of Flooding on Soil Nutrients and Microbial Community Structure in Tea Plantations[J]. Ecology and Environmental Sciences, 2025, 34(11): 1739-1748.
| 指标 | pH值 | 有机质质量分数/(g·kg−1) | 有效磷质量分数/(mg·kg−1) | 速效钾质量分数/(mg·kg−1) | 碱解氮质量分数/(mg·kg−1) |
|---|---|---|---|---|---|
| 数值 | 5.23 | 34.04 | 69.91 | 172.81 | 150.19 |
表1 土壤理化性质
Table 1 Basic chemical properties of soil
| 指标 | pH值 | 有机质质量分数/(g·kg−1) | 有效磷质量分数/(mg·kg−1) | 速效钾质量分数/(mg·kg−1) | 碱解氮质量分数/(mg·kg−1) |
|---|---|---|---|---|---|
| 数值 | 5.23 | 34.04 | 69.91 | 172.81 | 150.19 |
| 指标 | 处理 | ||||
|---|---|---|---|---|---|
| CK | T1 | T2 | T3 | T4 | |
| pH | 5.08±0.01e | 5.13±0.01d | 5.16±0.01c | 5.45±0.01b | 6.24±0.01a |
| 有机质质量分数/(g·kg−1) | 40.83±0.06a | 39.40±0.13b | 36.11±0.14c | 28.72±0.13d | 25.96±0.07e |
| 碱解氮质量分数/(mg·kg−1) | 144.81±0.67a | 132.72±0.89c | 138.10±1.16b | 111.89±1.16d | 101.14±0.34e |
| 有效磷质量分数/(mg·kg−1) | 41.01±0.11a | 24.90±0.06b | 14.81±0.06c | 2.53±0.06e | 3.14±0.03d |
| 速效钾质量分数/(mg·kg−1) | 171.44±0.18a | 168.07±0.33b | 91.71±0.40c | 76.40±0.18d | 71.58±0.23e |
表2 淹水对茶园土壤理化性质的影响
Table 2 Effects of flooding on soil nutrient content in tea plantations
| 指标 | 处理 | ||||
|---|---|---|---|---|---|
| CK | T1 | T2 | T3 | T4 | |
| pH | 5.08±0.01e | 5.13±0.01d | 5.16±0.01c | 5.45±0.01b | 6.24±0.01a |
| 有机质质量分数/(g·kg−1) | 40.83±0.06a | 39.40±0.13b | 36.11±0.14c | 28.72±0.13d | 25.96±0.07e |
| 碱解氮质量分数/(mg·kg−1) | 144.81±0.67a | 132.72±0.89c | 138.10±1.16b | 111.89±1.16d | 101.14±0.34e |
| 有效磷质量分数/(mg·kg−1) | 41.01±0.11a | 24.90±0.06b | 14.81±0.06c | 2.53±0.06e | 3.14±0.03d |
| 速效钾质量分数/(mg·kg−1) | 171.44±0.18a | 168.07±0.33b | 91.71±0.40c | 76.40±0.18d | 71.58±0.23e |
| 指标 | 细菌 | 真菌 | |||
|---|---|---|---|---|---|
| R2 | p | R2 | p | ||
| pH值 | 0.8775 | 0.002** 2) | 0.8751 | 0.002** | |
| OM | 0.4744 | 0.016* 1) | 0.5287 | 0.007** | |
| N | 0.4293 | 0.036* | 0.3572 | 0.084 | |
| P | 0.7866 | 0.001*** 3) | 0.8244 | 0.001*** | |
| K | 0.7151 | 0.001*** | 0.8018 | 0.001*** | |
表3 土壤养分因子与细菌和真菌群落结构的RDA分析
Table 3 RDA analysis of soil nutrient factors and bacterial and fungal community structure
| 指标 | 细菌 | 真菌 | |||
|---|---|---|---|---|---|
| R2 | p | R2 | p | ||
| pH值 | 0.8775 | 0.002** 2) | 0.8751 | 0.002** | |
| OM | 0.4744 | 0.016* 1) | 0.5287 | 0.007** | |
| N | 0.4293 | 0.036* | 0.3572 | 0.084 | |
| P | 0.7866 | 0.001*** 3) | 0.8244 | 0.001*** | |
| K | 0.7151 | 0.001*** | 0.8018 | 0.001*** | |
图5 土壤养分因子与细菌和真菌的属水平相对丰度的相关性分析 图中N表示碱解性氮,P表示有效磷,K表示速效钾,OM表示有机质。红色代表正相关,颜色越深相关程度越大;蓝色代表负相关,颜色越深负相关程度越大;*表示差异显著检验,*p <0.05,** p<0.01
Figure 5 Correlation analysis between soil nutrient factors and genus‐level relative abundance of bacteria and fungi
| [1] |
DENG L, ZHANG Z N, SHANGGUAN, Z P, 2014. Long-term fencing effects on plant diversity and soil properties in China[J]. Soil and Tillage Research, 137: 7-15.
DOI URL |
| [2] |
FAN D M, ZHAO Z M, WANG Y, et al., 2022. Crop-type-driven changes in polyphenols regulate soil nutrient availability and soil microbiota[J]. Frontiers in Microbiology, 13: 964039-964056.
DOI URL |
| [3] |
FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an Ecological Classification of Soil Bacteria[J]. Ecology, 88(6): 1354-1364.
DOI PMID |
| [4] | GAO J S, YANG C F, ZHUANG S Y, et al., 2024. Effects of mulching and flooding on soil nutrients and bacterial community structure under Phyllostachys praecox[J]. Frontiers in Forests and Global Change, 7: 71411297. |
| [5] | HARTMAN K, TRINGE S G, 2019. Interactions between plants and soil shaping the root microbiome under abiotic stress[J]. The Biochemical Journal, 476(17): 2705-2724. |
| [6] |
IZABELA M, KASIA P, MICHAL K, 2022. Phylum gemmatimonadota and its role in the environment[J]. Microorganisms, 10(1): 151-151.
DOI URL |
| [7] |
JI L F, NI K, WU Z D, et al., 2020. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization[J]. Biology and Fertility of Soils, 56: 633-646.
DOI |
| [8] |
KUMARAGAMAGE D, CONCEPCION A, GREGORY C, et al., 2020. Temperature and freezing effects on phosphorus release from soils to overlying floodwater under flooded-anaerobic conditions[J]. Journal of Environmental Quality, 49(3): 700-711.
DOI PMID |
| [9] | LI G J, WEI N, HOU H W, 2025. Uncovering the Secrets of How Plants Adapt to Water Stress[J/OL]. Plant, Cell & Environment [2025-04-21] ( 2025-05-08). doi: 10.1111/pce.15571. |
| [10] |
LI Y C, LI Z, LI Z W, et al., 2016. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 121(3): 787-799.
DOI URL |
| [11] |
MANZONI S, SCHIMEL J P, PORPORATO A, 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis[J]. Ecology, 93(4): 930-938.
DOI PMID |
| [12] |
OSONO T, TAKEDA H, 2007. Microfungi associated with Abies needles and Betula leaf litter in a subalpine coniferous forest[J]. Canadian Journal of Microbiology, 53(1): 1-7.
PMID |
| [13] |
RAMETTE A, 2007. Multivariate analyses in microbial ecology[J]. FEMS Microbiology Ecology, 62(2): 142-160.
DOI PMID |
| [14] |
ROUSK J, BAATH E, BROOKES P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 4: 1340-1351.
DOI URL |
| [15] | SEGATA N, IZARD J, WALDRON L, et al., 2011. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 12(6): 1-18. |
| [16] |
SONG T, ZHANG X L, LI J, et al., 2021. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs)[J]. Science of The Total Environment, 801: 149319.
DOI URL |
| [17] |
UNGER I M, MOTAVALLI P P, MUZIKA R M, 2009. Changes in soil chemical properties with flooding: A field laboratory approach[J]. Agriculture Ecosystems and Environment, 131(1-2): 105-110.
DOI URL |
| [18] |
WANG C, DONG D, WANG H S, et al., 2016. Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnology for Biofuels, 9: 17-22.
DOI URL |
| [19] |
WANG J, CHAPMAN S J, YAO H Y, 2015. The effect of storage on microbial activity and bacterial community structure of drained and flooded paddy soil[J]. Journal of Soils and Sediments, 15: 880-889.
DOI URL |
| [20] |
WANG X Y, HE T H, GEN S Y, Z, et al., 2020. Soil properties and agricultural practices shape microbial communities in flooded and rainfed croplands[J]. Applied Soil Ecology, 147: 103449.
DOI URL |
| [21] | WU H W, CUI H L, FU C X, et al., 2024. Unveiling the crucial role ofsoil microorganisms in carbon cycling: A review[J]. Science of The Total Environment, 20: 168627. |
| [22] |
XU M, XIAN Y, WU J, et al., 2019. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 19(5): 2534-2542.
DOI |
| [23] |
YADAV J, VERMA J P, YADAV S K., et al., 2011. Effect of salt concentration and pH on soil inhabiting fungus Penicillium citrinum Thom for solubilization of tricalcium phosphate[J]. Microbiology Journal, 1(1): 25-32.
DOI URL |
| [24] | ZHANG S N, WANG Y, SUN L T, et al., 2020. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation[J]. BMC Microbiol, 20(1): 103. |
| [25] |
ZHAO Z W, GE T D, GUNINA A, et al., 2019. Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: Combining continuous 13C labeling with PLFA analysis[J]. Plant and Soil, 445: 137-52.
DOI |
| [26] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 8-18. |
| BAO S D, 2000. Agrochemical analysis of soil[M]. Third Edition. Beijing: China Agriculture Press: 8-18. | |
| [27] | 程丽, 张志永, 李春辉, 等, 2016. 三峡库区消落带土壤淹水对氮素转化及酶活性的影响[J]. 华中农业大学学报, 35(5): 33-38. |
| CHENG L, ZHANG Z Y, LI C H, et al., 2016. Effects of water-flooding in water-level-fluctuating zone of Three Gorges Reservoir on transformation of soil nitrogen form and activities of related enzymes[J]. Journal of Huazhong Agricultural University, 35(5): 33-38. | |
| [28] |
龚小雅, 石记博, 方凌, 等, 2022. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 55(12): 2472-2484.
DOI |
|
GONG X Y, SHI J B, FANG L, et al., 2022. Effects of flooding on soil chemical properties and microbial community composition on farmland of continuous cropped pepper[J]. Scientia Agricultura Sinica, 55(12): 2472-2484.
DOI |
|
| [29] | 郭佳, 蒋先军, 周雪, 等, 2015. 三峡库区消落带周期性淹水-落干对硝化微生物生态过程的影响[J]. 微生物学报, 56(6): 983-999. |
| GUO J, JIANG X J, ZHOU X, et al., 2015. Effects of periodic watering-drying on the ecological process of nitrifying microorganisms in the water-level fluctuation zone of the Three Gorges Reservoir area[J]. Acta Microbiologica Sinica, 56(6): 983-999. | |
| [30] |
郭建华, 韩宝文, 邢竹, 2003. 耗竭土壤钾素的固定及对棉花钾素营养的作用[J]. 华北农学报, 18(1): 94-96.
DOI |
| GUO J H, HAN B W, XING Z, 2003. The potassium fixed and effect on cotton of depletion[J]. Soil Acta Agriculturae Boreali-Sinica, 18(1): 94-96. | |
| [31] | 黄昌勇, 徐建明, 2010. 土壤学[M]. 北京: 中国农业出版社: 177-178. |
| HUANG C Y, XU J M, 2010. Soil science[M]. Beijing: China Agriculture Press: 177-178. | |
| [32] |
阚靖博, 李丽娜, 曲东, 等, 2014. 淹水培养过程中水稻土细菌丰度与群落结构变化[J]. 生物多样性, 22(4): 508-515.
DOI |
|
KAN J B, LI L N, QU D, et al., 2014. Changes in bacterial abundance and community structure associated with flooding in paddy soil[J]. Biodiversity Science, 22(4): 508-515.
DOI |
|
| [33] | 阚靖博, 2015. 水稻土铁还原细菌丰度及群落结构对淹水时间的响应[D]. 咸阳: 西北农林科技大学:1‐65. |
| KAN J B, 2015. Response of abundance and community structure of iron-reducing bacteria to flooding time in paddy soil[D]. Xianyang: Northwest A & F University: 1‐65. | |
| [34] | 刘杰云, 张文正, 沈健林, 等, 2021. 水分管理及生物质炭对稻田土壤含水率及pH值的影响[J]. 灌溉排水学报, 40(7): 44-50. |
| LIU J Y, ZHANG W Z, SHEN J L, et al., 2021. The Combined effects of water management and biochar amendment on soil water content and pH of paddy soil[J]. Journal of Irrigation and Drainage, 40(7): 44-50. | |
| [35] | 刘永红, 房保柱, 高磊, 等, 2022. 巴里坤盐湖退化区土壤微生物群落结构及生态功能分析[J]. 微生物学报, 62(6): 2053-2073. |
| LIU Y H, FANG B Z, GAO L, et al., 2022. Community structure and ecological functions of soil microorganisms in the degraded area of Barkol Lake[J]. Acta Microbiologica Sinica, 62(6): 2053-2073. | |
| [36] | 刘仲华, 陈宗懋, 杨亚军, 等, 2021. 创新驱动中国茶产业高质量发展——从茶学基础研究到支撑产业发展[J]. 中国茶叶, 43(2): 1-9. |
| LIU Z H, CHEN Z M, YANG Y J, et al., 2021. Innovation drives high-quality development of Chinese tea industry: From basic research of tea science to supporting industrial development[J]. China Tea, 43(2): 1-9. | |
| [37] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 1-13. |
| LU R K, 2000. Agricultural chemical analysis methods of soil[M]. Beijing: China Agricultural Science and Technology Press: 1-13. | |
| [38] | 马良, 黄志霖, 华琳, 2022. 三峡库区小流域土地利用结构对土壤养分流失及水质影响[J]. 水生态学杂志, 43(1): 1-7. |
| MA L, HUANG Z L, HUA L, 2022. Effects of land use on soil nutrient loss and water quality in the Three Gorges Reservoir[J]. Area of China Journal of Hydroecology, 43(1): 1-7. | |
| [39] | 苗婷婷, 吴中能, 刘俊龙, 等, 2025. 季节性淹水对长江滩地杨树林土壤理化性质和酶活性及微生物群落的影响[J]. 东北林业大学学报, 53(1): 134-146. |
| MIAO T T, WU Z N, LIU J L, et al., 2025. The impact of seasonal flooding on the physicochemical properties, enzyme activity, and microbial communities of populus forest soil in the Yangtze River Floodplain[J]. Journal of Northeast Forestry University, 53(1): 134-146. | |
| [40] | 乔沙沙, 2017. 庞泉沟针叶林微生物群落结构与碳代谢功能特征[D]. 太原: 山西大学: 1-92. |
| QIAO S S, 2017. The structure and carbon cycle characteristics of temperate coniferous forests driven by soil microbial community in Pangquangou Natural Reserve, Shanxi province[D]. Taiyuan: Shanxi University: 1-92. | |
| [41] | 任晓松, 2021. 渍水对玉米根系生理指标、根际土壤酶及产量的影响[D]. 哈尔滨: 东北农业大学: 1-64. |
| REN X S, 2021. Effects of waterlogging on physiological characteristics of roots, enzyme activities in rhizosphere soil and yeild of maize[D]. Harbin: Northeast Agricultural University:1-64. | |
| [42] | 苏玲, 章永松, 林咸永, 2001. 干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J]. 植物营养与肥料学报, 7(4): 410-415. |
| SU L, ZHANG Y S, LIN X Y, 2001. Changes of iron oxides and phosphorus adsorption-desorption in paddy soils under alternating flooded and dried conditions[J]. Journal of Plant Nutrition and Fertilizers, 7(4): 410-415. | |
| [43] | 谭淑端, 朱明勇, 张克荣, 等, 2011. 深淹对狗牙根根际土壤酶活性及肥力的影响[J]. 中国生态农业学报, 19(1): 8-12. |
|
TAN S D, ZHU M Y, ZHANG K R, et al., 2011. Effect of submergence on rhizospheric soil enzyme activity and fertility of bermudagrass (Cynodon dactylon)[J]. Chinese Journal of Eco-Agriculture, 19(1): 8-12.
DOI URL |
|
| [44] |
凃月, 李海翔, 姜磊, 等, 2019. 广西会仙湿地不同植物根际细菌群落结构及多样性研究[J]. 生态环境学报, 28(2): 252-261.
DOI |
| TU Y, LI H X, JIANG L, et al., 2019. Bacterial communities structure and diversity in rhizosphere of different plants from Huixian wetland, Guangxi[J]. Guangxi. Ecology and Environmental Sciences, 28(2): 252-261. | |
| [45] |
颜鹏, 韩文炎, 李鑫, 等, 2020. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 53(4): 795-801.
DOI |
|
YAN P, HAN W Y, LI X, et al., 2020. Present situation and analysis of soil acidification in Chinese Tea Garden[J]. Scientia Agricultura Sinica, 53(4): 795-801.
DOI |
|
| [46] | 杨文航, 秦红, 任庆水, 等, 2017. 三峡库区消落带重建植被下土壤微生物生物量碳氮含量特征[J]. 生态学报, 37(23): 7947-7955. |
| YANG W H, QIN H, REN Q S, et al., 2017. Characteristics of soil microbial biomass C and N under revegetation in the hydro-fluctuation belt of the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica, 37(23): 7947-7955. | |
| [47] |
杨阳, 章妮, 蒋莉莉, 等, 2021. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 29(5): 1043-1052.
DOI |
|
YANG Y, ZHANG N, JIANG L L, et al., 2021. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on The Tibetan Plateau[J]. Acta Agrestia Sinica, 29(5): 1043-1052.
DOI |
|
| [48] | 翟婉璐, 钟哲科, 高贵宾, 等, 2017. 覆盖经营对雷竹林土壤细菌群落结构演变及多样性的影响[J]. 林业科学, 53(9): 133-142. |
| ZHAI W L, ZHONG Z K, GAO G B, et al., 2017. Influence of Mulching Management on Soil Bacterial Structure and Diversity in Phyllostachys praecox Stands[J]. Scientia Silvae Sinicae, 53(9): 133-142. | |
| [49] |
张洋洋, 凡莉莉, 黄霞, 等, 2021. 毛竹林带状采伐后垦复施肥对新竹生长及土壤养分含量的影响[J]. 热带作物学报, 42(4): 1047-1054.
DOI |
| ZHANG Y Y, FAN L L, HUANG X, et al., 2021. Effects of eclamation and fertilization on growth and soil nutrient content after strip clear cutting in phyllostachys edulis forests[J]. Chinese Journal of Tropical Crops, 42(4): 1047-1054. | |
| [50] | 中国茶叶流通协会, 2023. 2023年度中国茶叶产销形势报告[R]. [2024-04-16]. https://mp.weixin.qq.com/s/JcL0ww7dHZKaGexvKXoiaA. |
| China Tea Circulation Association, 2023. Report on China’s Tea Production and Marketing Situation in 2023[R]. [2024-04-16]. https://mp.weixin.qq.com/s/JcL0ww7dHZKaGexvKXoiaA. | |
| [51] | 中国农业科学院茶叶产业专家团, 2024. 极端洪涝灾害茶园减灾和恢复技术措施[EB/OL]. 中国农业科学院. 2024-06-24 [2025-05-08]. https://www.caas.cn/zt/cyzj_0/zjjy-c_3/7d88803d2555481ba221e6f9967e40b0.htm. |
| Tea industry expert group of Chinese Academy of Agricultural Sciences, 2024. Technical measures for disaster reduction and recovery of tea plantations in extreme floods[EB/OL]. Chinese Academy of Agricultural Sciences, 2024-06-24 [2025-05-08] https://www.caas.cn/zt/cyzj_0/zjjy-c_3/7d88803d2555481ba221e6f9967e40b0.htm. |
| [1] | 刘亚军, 段亦鹏, 李荣富, 池泽涌, 吴永明. 不同养分环境下入湖河口沉积物原核生物群落特征——以饶河入湖口为例[J]. 生态环境学报, 2025, 34(6): 853-862. |
| [2] | 尹晓彤, 郭盾, 史维娟, 黎斌, 杨垒, 蓝君, 任勇翔. 根系形态异位预构建强化湿地移栽植物的耐淹和固土特性研究[J]. 生态环境学报, 2025, 34(3): 432-441. |
| [3] | 常春英, 王刚, 曹浩轩, 邓一荣, 陶亮. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 2025, 34(1): 118-125. |
| [4] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
| [5] | 李多美, 孔涛, 陈曦, 高明夫, 高熙梣, 曾泽宇, 保佳慧. 古龙酸母液混制肥和草席覆盖措施对新疆旱区牧草生长和土壤养分含量的影响[J]. 生态环境学报, 2024, 33(4): 548-559. |
| [6] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
| [7] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
| [8] | 周宏光, 甘艳平, 伍德权, 杨延梅, 张扬, 王璐瑶. 淹水-落干条件下FeMnMg-LDH对污染底泥中砷迁移转化的调控研究[J]. 生态环境学报, 2023, 32(7): 1249-1262. |
| [9] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
| [10] | 吴炜龙, 陈艺杰, 卫婷, 杨贵琼, 阳长洪, 甄珍, 蔺中. 蚯蚓驱动的滨海盐碱农田土壤中多环芳烃生物降解的机制研究[J]. 生态环境学报, 2023, 32(11): 1996-2006. |
| [11] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
| [12] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
| [13] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||