生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 776-783.DOI: 10.16258/j.cnki.1674-5906.2023.04.015
收稿日期:
2023-02-07
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*何海龙(1985年生),男,教授,主要研究方向土壤物理与水土保持。E-mail: hailong.he@hotmail.com作者简介:
冯树娜(1998年生),女,硕士研究生,主要研究方向土壤修复。E-mail: fsn2945074751@nwafu.edu.cn
基金资助:
FENG Shuna(), LÜ Jialong, HE Hailong(
)
Received:
2023-02-07
Online:
2023-04-18
Published:
2023-07-12
摘要:
土壤中重金属污染严重威胁人类健康和生态环境安全,而化学淋洗是重要的重金属污染修复措施之一且取得了较大进展,但目前针对汞污染土壤修复的淋洗研究不足,严重制约其机理解析和应用。采用室内土柱试验和HYDRUS-1D数值模拟,探究不同化学淋洗剂EDTA、柠檬酸(CA)、Na2S2O3和KI对黄绵土中重金属汞的去除效果,并筛选出最优的淋洗剂种类和配比。同时研究了土壤理化性状对重金属迁移过程和淋洗的响应,并建立溶质运移模型明确土壤中汞的迁移过程。结果表明:(1)KI对黄棉土中汞的去除效果较好,优化配比后土壤汞去除率达46.4%。KI溶液对土壤汞解吸过程符合准一级动力学模型(r2=0.96),最大解吸量为4.09 mg?kg?1;(2)KI溶液淋洗后土柱中残留的汞含量随土柱深度增加而增加,平均质量分数为1.34 mg?kg?1,去除率为82.9%;KI对土柱中重金属汞的去除效果较振荡试验好,且淋洗过程有利于土壤中半移动性汞向移动性汞的转化;(3)HYDRUS-1D对土柱中汞穿透曲线拟合较好,拟合系数r2>0.95;拟合参数和误差评价值均在置信区间范围之内,可根据拟合预测出土柱中淋出液汞质量浓度达到安全排放标准所需的时间为87.7 h;(4)淋洗后土壤pH值和电导率较淋洗前增加显著,分别增加了0.67、1.15 mS?cm?1,而阳离子交换量则显著减少,平均减少量为1.64 cmol?kg?1;土壤阳离子交换量和pH值对土壤汞含量和形态影响显著。综上,KI淋洗能较好的修复汞污染土壤,淋洗后显著降低了土壤中汞的毒性和生物利用度,且满足高效、经济的修复目标,为汞污染土壤的淋洗修复提供了理论依据和技术思路。
中图分类号:
冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783.
FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil[J]. Ecology and Environment, 2023, 32(4): 776-783.
w(粒径组成)/% | pH值 | w(有机质)/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 电导率/ (mS∙cm−1) | w(总汞)/ (mg∙kg−1) | w(移动性汞)/ (mg∙kg−1) | w(半移动性汞)/ (mg∙kg−1) | w(不移动性汞)/ (mg∙kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
砂粒 | 粉粒 | 黏粒 | ||||||||
30.10 | 55.11 | 14.79 | 8.16 | 11.33 | 21.17 | 0.25 | 6.89 | 0.18 | 6.47 | 0.24 |
表1 供试土壤基本理化性状
Table 1 Basic physical and chemical properties of loess soil
w(粒径组成)/% | pH值 | w(有机质)/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 电导率/ (mS∙cm−1) | w(总汞)/ (mg∙kg−1) | w(移动性汞)/ (mg∙kg−1) | w(半移动性汞)/ (mg∙kg−1) | w(不移动性汞)/ (mg∙kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
砂粒 | 粉粒 | 黏粒 | ||||||||
30.10 | 55.11 | 14.79 | 8.16 | 11.33 | 21.17 | 0.25 | 6.89 | 0.18 | 6.47 | 0.24 |
模型 | 非标准化系数 | 标准化系数 | t | 显著性 | VIF | ||
---|---|---|---|---|---|---|---|
B | 标准误差 | β | |||||
常量 | −17.008 | 14.593 | — | −1.137 | 0.270 | — | |
浓度 | 243.307 | 60.324 | 0.591 | 4.039 | 0.001 | 1.000 | |
浸提时间 | 1.0107 | 0.347 | 0.471 | 3.195 | 0.005 | 1.014 | |
液土比 | 1.321 | 1.201 | 0.162 | 1.100 | 0.286 | 1.014 |
表2 KI配比对汞去除率的回归分析
Table 2 Regression analysis of KI ratio on Hg(Ⅱ) removal rate
模型 | 非标准化系数 | 标准化系数 | t | 显著性 | VIF | ||
---|---|---|---|---|---|---|---|
B | 标准误差 | β | |||||
常量 | −17.008 | 14.593 | — | −1.137 | 0.270 | — | |
浓度 | 243.307 | 60.324 | 0.591 | 4.039 | 0.001 | 1.000 | |
浸提时间 | 1.0107 | 0.347 | 0.471 | 3.195 | 0.005 | 1.014 | |
液土比 | 1.321 | 1.201 | 0.162 | 1.100 | 0.286 | 1.014 |
模型 | 准一级动力学方程 | 准二级动力学方程 | Elovich方程 | 颗粒内扩散方程 | 双常数方程 |
---|---|---|---|---|---|
q=qe(1−e−kx) | q=kqe2x/(1+qekx) | q=a+blnt | q=a+t−1/b | lnq=a+blnt | |
参数qe/a | 4.093 | 5.134 | 1.307 | 0.003817 | 0.08208 |
参数k/b | 0.1747 | 0.03402 | 2.13 | 0.41 | |
系数r2 | 0.9634 | 0.9584 | 0.8793 | 0.9149 | 0.9173 |
表3 黄绵土中汞解吸动力学模型方程拟合参数
Table 3 Fitting parameters of kinetic model equation of Hg(Ⅱ) desorption in loess soil
模型 | 准一级动力学方程 | 准二级动力学方程 | Elovich方程 | 颗粒内扩散方程 | 双常数方程 |
---|---|---|---|---|---|
q=qe(1−e−kx) | q=kqe2x/(1+qekx) | q=a+blnt | q=a+t−1/b | lnq=a+blnt | |
参数qe/a | 4.093 | 5.134 | 1.307 | 0.003817 | 0.08208 |
参数k/b | 0.1747 | 0.03402 | 2.13 | 0.41 | |
系数r2 | 0.9634 | 0.9584 | 0.8793 | 0.9149 | 0.9173 |
指标 | 黏粒含量 | pH值 | 有机质 | 阳离子交换量 | 电导率 |
---|---|---|---|---|---|
总汞 | 0.479 | −0.750** | −0.073 | 0.692* | −0.437 |
移动性汞 | 0.414 | −0.832** | −0.224 | 0.764** | −0.461 |
半移动性汞 | 0.625* | −0.838** | −0.269 | 0.722** | −0.512 |
不移动性汞 | 0.175 | −0.405 | −0.202 | 0.230 | 0.201 |
表4 土壤理化性状与汞含量和形态的相关性
Table 4 Correlation between soil physicochemical properties and Hg(Ⅱ) content and morphology
指标 | 黏粒含量 | pH值 | 有机质 | 阳离子交换量 | 电导率 |
---|---|---|---|---|---|
总汞 | 0.479 | −0.750** | −0.073 | 0.692* | −0.437 |
移动性汞 | 0.414 | −0.832** | −0.224 | 0.764** | −0.461 |
半移动性汞 | 0.625* | −0.838** | −0.269 | 0.722** | −0.512 |
不移动性汞 | 0.175 | −0.405 | −0.202 | 0.230 | 0.201 |
[1] | ANDONI M, IOVI A, NEGRA P, et al., 2008. Mercury removing from the contamined soil using KI solution, The pH influence[J]. Revista De Chimie, 59(7): 779-781. |
[2] |
DERMONT G, BERGERON M, MERCIER G, et al., 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 152(1): 1-31.
DOI PMID |
[3] |
DO CARMO D L, SILA C A, 2016. Electrical conductivity and corn growth in contrasting soils affected by liming application at various levels[J]. Pesquisa Agropecuaria Brasileira, 51(10): 1762-1772.
DOI URL |
[4] |
DRISCOLL C T, MASON R P, CHAN H M, et al., 2013. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science Technology, 47(10): 4967-4983.
DOI URL |
[5] |
FERNANDEZ-MARTINEZ R, LORDO J, ORDONEZ A, et al., 2005. Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain)[J]. Science of the Total Environment, 346(1-3): 200-212.
DOI URL |
[6] |
FINZGAR N, LESTAN D, 2008. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution[J]. Chemosphere, 73(9): 1484-1491.
DOI PMID |
[7] |
JIANG H, ZHANG L, ZHENG B H, et al., 2012. Role of organic acids in desorption of mercury from contaminated soils in eastern shandong province, China[J]. Chinese Geographical Science, 22(4): 414-421.
DOI URL |
[8] |
KHALID S, SHAHILD M, NIAZI N K, et al., 2017. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 182: 247-268.
DOI URL |
[9] |
LI P, FENG X B, QIU G L, et al., 2009. Mercury pollution in Asia: A review of the contaminated sites[J]. Journal of Hazardous Materials, 168(2): 591-601.
DOI URL |
[10] |
LI Y Y, LU C, ZHU N L, et al., 2022. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice[J]. Journal of Hazardous Materials, 430: 128447.
DOI URL |
[11] | MARCHUK S, MARCHUK A, 2018. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils[J]. Soil & Tillage Research, 182: 35-44. |
[12] |
OZER A, OZER D, EKIZ H I, 2004. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata[J]. Adsorption-Journal of the International Adsorption Society, 10(4): 317-326.
DOI URL |
[13] |
REDDY K R, ALA P R, 2005. Electrokinetic remediation of metal- contaminated field soil[J]. Separation Science and Technology, 40(8): 1701-1720.
DOI URL |
[14] |
WANG J X, FENG X B, ANDERSON C W N, et al., 2012. Implications of mercury speciation in thiosulfate treated plants[J]. Environmental Science & Technology, 46(10): 5361-5368.
DOI URL |
[15] |
WANG Y P, LIN Q T, XIAO R B, et al., 2020. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid[J]. Ecotoxicology and Environmental Safety, 206: 111179.
DOI URL |
[16] |
WASAY S A, ARNFALK P, TOKUNAGA S, 1995. Remediation of a soil polluted by mercury with acidic potassiumiodide[J]. Journal of Hazardous Materials, 44(1): 93-102.
DOI URL |
[17] |
WASAY S A, BARRINGTON S, TOKUNAGA S, 2001. Organic acids for the in situ remediation of soils polluted by heavy metals: Soil flushing in columns[J]. Water Air and Soil Pollution, 127(1-4): 301-314.
DOI URL |
[18] | WEI Z B, CHEN Y H, LI X Q, et al., 2022. Remediation of heavy metal contaminated farmland soil by biodegradable chelating agent GLDA[J]. Applied Sciences-Basel, 12(18): 9277. |
[19] | WUANA R A, OKIEIMEN F E, IMBORVUNGU J A, 2010. Removal of heavy metals from a contaminated soil using organic chelating acids[J]. International Journal of Environmental Science & Technology, 7(3): 485-496. |
[20] |
XU J Y, KLEGA D B, BIESTER H, et al., 2014. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil[J]. Chemosphere, 109: 99-105.
DOI PMID |
[21] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 25-186. |
BAO S D, 2000. Soil agrochemical analysis[M]. The third edition. Beijng: China Agricultural Press: 25-186. | |
[22] | 陈宗英, 张焕祯, 2012. 汞污染土壤的萃取修复技术研究[J]. 地学前缘, 19(6): 230-235. |
CHEN Z Y, ZHANG H Z, 2012. Research on extract remediation technology of mercury-contaminated soils[J]. Earth Science Frontiers, 19(6): 230-235. | |
[23] | 董汉英, 仇荣亮, 赵芝灏, 等, 2010. 工业废弃地多金属污染土壤组合淋洗修复技术研究[J]. 土壤学报, 47(6): 1126-1133. |
DONG H Y, QIU R L, ZHAO Z H, et al., 2010. Sequential elution technique for remediation of multi-metal contaminated brownfield soils[J]. Acta Pedologica Sinica, 47(6): 1126-1133. | |
[24] | 高震国, 钟瑞林, 杨帅, 等, 2022. HYDRUS模型在中国的最新研究与应用进展[J]. 土壤, 54(2): 219-231. |
GAO Z G, ZHONG R L, YANG S, et al., 2022. Recent progresses in research and application of HYDRUS modal in Chian[J]. Soils, 54(2): 219-231. | |
[25] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报 (2014年4月17日)[J]. 环境教育 (6): 8-10. |
Minisry of Ecology and Environment of the People’s Republic of China, Minisry of Land and Resources of the People’s Republic of China, 2014. Bulletin of the national survey on soil pollution (April 17, 2014)[J]. Environmental Education (6): 8-10. | |
[26] | 吕晶晶, 石兰君, 窦艳艳, 等, 2022. 基于HYDRUS-1D的改良土壤渗滤处理污废水模型研究[J]. 环保科技, 28(6): 1-5, 16. |
LÜ J J, SHI L J, DOU Y Y, et al., 2022. Study on modified soil infiltration system model for wastewater treatment based on HYDRUS-1D[J]. Environmental Science and Technology, 28(6): 1-5, 16.
DOI URL |
|
[27] | 邵乐, 史学峰, 李昌武, 等, 2019. 化学氧化强化化学淋洗修复汞污染土壤的试验研究[J]. 湖南有色金属, 35(6): 54-58. |
SHAO L, SHI X F, LI C W, et al., 2019. Experimental study on remediation of mercury contaminated soil by chemical oxidation enhanced chemical leaching[J]. Hunan Nonferrous Metals, 35(6): 54-58. | |
[28] | 万朔阳, 吴勇, 唐学芳, 等, 2020. 基于HYDRUS-1D对西坝镇农田土壤重金属迁移模拟及空间解析[J]. 科学技术与工程, 20(2): 854-859. |
WAN S Y, WU Y, TANG X F, et al., 2020. Simulation and spatial analysis of heavy metal migration in xiba town soil based on HYDRUS-1D[J]. Science Technology and Engineering, 20(2): 854-859. | |
[29] | 王娜, 2019. 汞污染土壤的修复技术概述[J]. 河南科技 (8): 156-158. |
WANG N, 2019. Overview of remediation Techniques for mercury contaminated soil[J]. Henan Science and Technology (8): 156-158. | |
[30] | 杨文俊, 辜娇峰, 周航, 等, 2019. 农田土壤重金属淋洗剂筛选与效应分析[J]. 水土保持学报, 33(4): 321-328. |
YANG W J, GU J F, ZHOU H, et al., 2019. Screening and effect analysis of eluents rmoving heavy metals from paddy soil[J]. Journal of Soil and Water Conservation, 33(4): 321-328. | |
[31] | 姚瑶, 张世熔, 王怡君, 等, 2018. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 12(7): 2039-2046. |
YAO Y, ZHANG S R, WANG Y J, et al., 2018. Effects of different environmentally friendly washing agents on removal of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 12(7): 2039-2046. | |
[32] | 国家环境保护总局, 国家质量监督检验检疫总局, 2007. 危险废物鉴别标准——浸出毒物鉴别: GB 5085.3—2007[S]. 国家环境保护总局, 国家质量监督检验检疫总局: 5. |
State Environmental Protection Administration, State Administration of Quality Supervision, Inspection and Quarantine, 2007. Identification Standards for Hazardous Wastes: Identification for Extraction Toxiciy: GB 5085.3—2007[S]. State Administration of Quality Supervision, Inspection and Quarantine: 5. | |
[33] | 生态环境部,国家市场监督管理总局:2018. 土壤环境质量——农用地土壤污染风险管控标准 (试行): GB 15618—2018 [S]. 生态环境部, 国家市场监督管理总局: 2. |
Ministry of Ecology and Environment, State Administration for Market Regulation, 2018. Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Ministry of Ecology and Environment, State Administration for Market Regulation: 2. |
[1] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[2] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[3] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[4] | 郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188. |
[5] | 邢树文, 许佳敏, 黄彬, 高锦婷, 韩丽. 钨尾矿重金属污染对茶园土壤动物群落结构及多样性的影响[J]. 生态环境学报, 2021, 30(9): 1903-1915. |
[6] | 程俊伟, 蔡深文, 黄明琴. 贵州湘江锰矿区优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(8): 1742-1750. |
[7] | 王卫红, 高双全, 杜衍红, 李志丰, 窦飞, 曾晓舵. 镉污染菜地叶面阻隔剂对不同品种辣椒镉积累影响[J]. 生态环境学报, 2021, 30(8): 1751-1756. |
[8] | 牛学奎, 吴学勇, 王薇, 艾志敏, 王舒婷, 侯娟, 周涛. 典型鼓风炉铅冶炼废渣堆场周边优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(6): 1293-1298. |
[9] | 童辉, 乔江涛, 周继梅, 雷琴凯, 陈曼佳, 刘承帅. 硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应[J]. 生态环境学报, 2021, 30(5): 1069-1075. |
[10] | 赵其国, 沈仁芳, 滕应, 李秀华. 中国重金属污染区耕地轮作休耕制度试点进展、问题及对策建议[J]. 生态环境学报, 2017, 26(12): 2003-2007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||