生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1742-1750.DOI: 10.16258/j.cnki.1674-5906.2021.08.021
收稿日期:
2021-03-20
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
* 蔡深文(1984年生),男,教授,博士,主要从事环境污染物的生态效应及其机制研究。E-mail: caishenwen@163.com作者简介:
程俊伟(1989年生),男,讲师,硕士,研究方向为生态资源化与环境修复。E-mail: junweicheng@126.com
基金资助:
CHENG Junwei(), CAI Shenwen*(
), HUANG Mingqin
Received:
2021-03-20
Online:
2021-08-18
Published:
2021-11-03
摘要:
黔北地区锰矿资源丰富,开采、冶炼和堆积过程导致区域土壤重金属污染问题突出,为筛选适应该区域修复土壤重金属污染的先锋植物,对贵州湘江锰矿区土壤及13种优势植物地上部和根部中Mn、Cb、Pb、Cu、Zn、Cr和Hg含量进行了测定分析,分别采用单因子和内梅罗污染指数法、富集和转运系数对土壤污染风险及植物富集特征进行评价。结果表明,锰矿区环境土壤中Hg、Cd、Cr、Mn、Cu和Zn存在不同程度的污染,单因子污染指数分别为264.09、5.18、3.38、1.57、2.31和2.40,内梅罗综合污染指数达188.40,远超重度污染水平限值,形成了以Hg、Cd为主导,Mn-Cr-Cu-Zn伴生的复合污染区域特征。13种优势植物中姬蕨(Hypolepis punctata)、垂序商陆(Phytolacca americana)、刺苋(Amaranthus spinosus)、苍耳(Xanthium sibiricum)对Cd的富集系数和转运系数值均超过1;Mn在垂序商陆(Phytolacca americana)、小蓬草(Conyza canadensis)和酸模叶蓼(Polygonum lapathifolium)中的富集量远超正常植物限值,3种植物在高浓度Mn环境中均具有良好的耐性和富集特征。垂序商陆地上部对Mn和Zn的BCF值分别达1.30和1.83,属Mn、Cd、Zn的富集型植物;姬蕨对Mn的BCF大于1,但BTF远小于1,属囤积型植物;绞股蓝(Gynostemma pentaphyllum)和鳢肠(Eclipta prostrata)对除Zn、Mn外的其余元素的BCF均小于1,属规避型植物。研究区土壤中Mn、Cr、Cd、Cu质量分数分别与植物根部Zn、Cd、Hg质量分数呈显著正相关关系(P<0.05),Mn、Cr、Cd、Cu四类高浓度金属元素有助于促进植物对Zn、Cd和Hg的富集;土壤中Zn质量分数与植物根部Hg质量分数呈极显著负相关关系(P<0.01),存在胁迫抑制。垂序商陆、小蓬草、酸模叶蓼、苍耳具有较强的重金属综合富集能力,可作为治理该地区环境污染的先锋植物。
中图分类号:
程俊伟, 蔡深文, 黄明琴. 贵州湘江锰矿区优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(8): 1742-1750.
CHENG Junwei, CAI Shenwen, HUANG Mingqin. Bioconcentration of Heavy Metals in Dominant Plants of Xiangjiang Manganese Mining Area in Guizhou Province[J]. Ecology and Environment, 2021, 30(8): 1742-1750.
科 Family | 属 Genus | 种 Species |
---|---|---|
菊科 Compositae | 白酒草属 (Conyza) | 小蓬草 (Conyza canadensis) |
天名精属(Carpesium) | 天名精 (Carpesium abrotanoides) | |
蒿属 (Artemisia) | 野艾蒿 (Artemisia lavandulaefolia) | |
苍耳属 (Xanthium) | 苍耳 (Xanthium sibiricum) | |
鳢肠属( Eclipta) | 鳢肠 (Eclipta prostrata) | |
葫芦科Cucurbitaceae | 绞股蓝属(Gynostemma) | 绞股蓝 (Gynostemma pentaphyllum) |
木贼科 Equisetidae | 木贼属 (Equisetum) | 节节草 (Equisetum ramosissimum) |
禾本科 Gramineae | 芒属 (Miscanthus) | 芒草 (Miscanthus sinensis) |
苋科 Amaranthaceae | 苋属 (Amaranthus) | 刺苋 (Amaranthus spinosus) |
荨麻科 Urticaceae | 苎麻属 (Boehmeria) | 苎麻 (Boehmeria nivea) |
蓼科 Polygonaceae | 蓼属 (Polygonum) | 酸模叶蓼 (Polygonum lapathifolium) |
姬蕨科 Pteriaceae | 姬蕨属 (Hypolepis) | 姬蕨 (Hypolepis punctata) |
商陆科 Phytolacca | 商陆属 (Phytolacca) | 垂序商陆 (Phytolacca americana) |
表1 研究区优势植物种类
Table 1 Dominant plant species in study area
科 Family | 属 Genus | 种 Species |
---|---|---|
菊科 Compositae | 白酒草属 (Conyza) | 小蓬草 (Conyza canadensis) |
天名精属(Carpesium) | 天名精 (Carpesium abrotanoides) | |
蒿属 (Artemisia) | 野艾蒿 (Artemisia lavandulaefolia) | |
苍耳属 (Xanthium) | 苍耳 (Xanthium sibiricum) | |
鳢肠属( Eclipta) | 鳢肠 (Eclipta prostrata) | |
葫芦科Cucurbitaceae | 绞股蓝属(Gynostemma) | 绞股蓝 (Gynostemma pentaphyllum) |
木贼科 Equisetidae | 木贼属 (Equisetum) | 节节草 (Equisetum ramosissimum) |
禾本科 Gramineae | 芒属 (Miscanthus) | 芒草 (Miscanthus sinensis) |
苋科 Amaranthaceae | 苋属 (Amaranthus) | 刺苋 (Amaranthus spinosus) |
荨麻科 Urticaceae | 苎麻属 (Boehmeria) | 苎麻 (Boehmeria nivea) |
蓼科 Polygonaceae | 蓼属 (Polygonum) | 酸模叶蓼 (Polygonum lapathifolium) |
姬蕨科 Pteriaceae | 姬蕨属 (Hypolepis) | 姬蕨 (Hypolepis punctata) |
商陆科 Phytolacca | 商陆属 (Phytolacca) | 垂序商陆 (Phytolacca americana) |
Si | 污染程度 Degree of contamination | PI | 危害程度 Degree of hazard |
---|---|---|---|
Si≤1 | 无污染 No pollution | PI≤0.7 | 无污染 No pollution |
1<Si≤2 | 轻微污染 Slight pollution | 0.7<PI≤1.0 | 警戒级 Alert level |
2<Si≤3 | 轻度污染 Light pollution | 1.0<PI≤2.0 | 轻度污染 Light pollution |
3<Si≤5 | 中度污染 Moderate pollution | 2.0<PI≤3.0 | 中度污染 Moderate pollution |
Si>5 | 重度污染 Heavy pollution | PI>3.0 | 重度污染 Heavy pollution |
表2 评价分级标准及污染程度
Table 2 Evaluation criteria and pollution degree of soils
Si | 污染程度 Degree of contamination | PI | 危害程度 Degree of hazard |
---|---|---|---|
Si≤1 | 无污染 No pollution | PI≤0.7 | 无污染 No pollution |
1<Si≤2 | 轻微污染 Slight pollution | 0.7<PI≤1.0 | 警戒级 Alert level |
2<Si≤3 | 轻度污染 Light pollution | 1.0<PI≤2.0 | 轻度污染 Light pollution |
3<Si≤5 | 中度污染 Moderate pollution | 2.0<PI≤3.0 | 中度污染 Moderate pollution |
Si>5 | 重度污染 Heavy pollution | PI>3.0 | 重度污染 Heavy pollution |
指标 Index | Mn | Cd | Pb | Cu | Zn | Cr | Hg |
---|---|---|---|---|---|---|---|
w/(mg∙kg-1) | 195.73‒3308.69 | 0.02‒7.63 | 3.52‒60.87 | 39.28‒131.32 | 160.58‒331.83 | 119.11‒695.04 | 27.48‒36.45 |
均值 Mean/(mg∙kg-1) | 1248.52 | 3.42 | 19.44 | 73.97 | 238.98 | 324.16 | 29.05 |
贵州省土壤背景值 Soil background value of Guizhou | 794.0 | 0.66 | 35.2 | 32.0 | 99.5 | 95.9 | 0.11 |
平均超标倍数 Average exceeding the standard | 0.57 | 4.18 | NE | 1.31 | 1.40 | 2.38 | 263.09 |
Si | 1.57 | 5.18 | 0.55 | 2.31 | 2.40 | 3.38 | 264.09 |
PI | 188.40 |
表3 矿区土壤重金属质量分数及污染指数
Table 3 Heavy metal concentrations in soils and the pollution index
指标 Index | Mn | Cd | Pb | Cu | Zn | Cr | Hg |
---|---|---|---|---|---|---|---|
w/(mg∙kg-1) | 195.73‒3308.69 | 0.02‒7.63 | 3.52‒60.87 | 39.28‒131.32 | 160.58‒331.83 | 119.11‒695.04 | 27.48‒36.45 |
均值 Mean/(mg∙kg-1) | 1248.52 | 3.42 | 19.44 | 73.97 | 238.98 | 324.16 | 29.05 |
贵州省土壤背景值 Soil background value of Guizhou | 794.0 | 0.66 | 35.2 | 32.0 | 99.5 | 95.9 | 0.11 |
平均超标倍数 Average exceeding the standard | 0.57 | 4.18 | NE | 1.31 | 1.40 | 2.38 | 263.09 |
Si | 1.57 | 5.18 | 0.55 | 2.31 | 2.40 | 3.38 | 264.09 |
PI | 188.40 |
植物部位 Plant parts | 元素 Element | 矿区土壤 Mine soils | 地上部 Aboveground | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Cd | Pd | Cu | Zn | Cr | Hg | Mn | Cd | Pd | Cu | Zn | Cr | Hg | |||
根部 Root parts | Mn | 0.668** | -0.161 | 0.237 | -0.163 | 0.684** | -0.015 | -0.275 | 0.393 | 0.133 | -0.231 | 0.12 | 0.387 | 0.432 | -0.249 | |
Cd | 0.354 | 0.654* | 0.185 | 0.610* | -0.248 | 0.565* | 0.619* | 0.158 | 0.975** | 0.459 | -0.117 | 0.194 | -0.375 | 0.642* | ||
Pb | -0.099 | 0.694** | 0.123 | 0.709** | -0.500 | 0.232 | 0.713** | 0.055 | 0.584* | 0.469 | 0.047 | -0.124 | -0.433 | 0.743** | ||
Cu | 0.176 | -0.043 | -0.508 | -0.125 | 0.048 | 0.140 | -0.129 | -0.323 | -0.351 | 0.162 | 0.665** | -0.23 | 0.245 | -0.199 | ||
Zn | 0.639* | -0.488 | 0.476 | -0.521 | 0.547* | -0.051 | -0.519 | 0.431 | 0.239 | -0.096 | -0.233 | 0.784** | -0.112 | -0.459 | ||
Cr | 0.114 | -0.197 | -0.498 | -0.330 | 0.414 | 0.122 | -0.341 | -0.293 | -0.471 | -0.108 | 0.561* | -0.383 | 0.776** | -0.421 | ||
Hg | -0.339 | 0.948** | -0.236 | 0.976** | -0.802** | 0.357 | 0.995** | -0.198 | 0.516 | 0.518 | 0.137 | -0.336 | -0.386 | 0.986** |
表4 植物根部与地上部、矿区土壤中重金属质量分数的相关系数
Table 4 Correlation coefficients of heavy metal contents in different parts of plants and soils
植物部位 Plant parts | 元素 Element | 矿区土壤 Mine soils | 地上部 Aboveground | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Cd | Pd | Cu | Zn | Cr | Hg | Mn | Cd | Pd | Cu | Zn | Cr | Hg | |||
根部 Root parts | Mn | 0.668** | -0.161 | 0.237 | -0.163 | 0.684** | -0.015 | -0.275 | 0.393 | 0.133 | -0.231 | 0.12 | 0.387 | 0.432 | -0.249 | |
Cd | 0.354 | 0.654* | 0.185 | 0.610* | -0.248 | 0.565* | 0.619* | 0.158 | 0.975** | 0.459 | -0.117 | 0.194 | -0.375 | 0.642* | ||
Pb | -0.099 | 0.694** | 0.123 | 0.709** | -0.500 | 0.232 | 0.713** | 0.055 | 0.584* | 0.469 | 0.047 | -0.124 | -0.433 | 0.743** | ||
Cu | 0.176 | -0.043 | -0.508 | -0.125 | 0.048 | 0.140 | -0.129 | -0.323 | -0.351 | 0.162 | 0.665** | -0.23 | 0.245 | -0.199 | ||
Zn | 0.639* | -0.488 | 0.476 | -0.521 | 0.547* | -0.051 | -0.519 | 0.431 | 0.239 | -0.096 | -0.233 | 0.784** | -0.112 | -0.459 | ||
Cr | 0.114 | -0.197 | -0.498 | -0.330 | 0.414 | 0.122 | -0.341 | -0.293 | -0.471 | -0.108 | 0.561* | -0.383 | 0.776** | -0.421 | ||
Hg | -0.339 | 0.948** | -0.236 | 0.976** | -0.802** | 0.357 | 0.995** | -0.198 | 0.516 | 0.518 | 0.137 | -0.336 | -0.386 | 0.986** |
[1] |
BACCHETTA G, CAPPAI G, CARUCCI A, et al., 2015. Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environment[J]. Bulletin of Environmental Contamination and Toxicology, 94(3): 326-333.
DOI URL |
[2] |
BAKER A J M, 1981. Accumulators and excluders-strategies in the response of plants to heavy metals[J]. Journal of Plant Nutrition, 3(1-4): 643-654.
DOI URL |
[3] | BAKER A J M, BROOKS R R, 1989. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1: 81-126. |
[4] | DURUIBE J O, OGWUEGBU M O C, 2007. Heavy metal pollution and human biotoxic effects[J]. International Journal of Physical Sciences, 2(5): 112-118. |
[5] |
ESMAEILI A, MOORE F, KESHAVARZI B, et al., 2014. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran[J]. Catena, 121: 88-98.
DOI URL |
[6] |
KUANG J L, HUANG L N, CHEN L X, et al., 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage[J]. ISME Journal, 7(5): 1038-1050.
DOI URL |
[7] |
LIU W Q, SONG Y S, WANG B, et al., 2012. Nitrogen fixation in biotic crusts and vascular plan t communities on a copper mine tailings[J]. European Journal of Soil Biology, 50: 15-20.
DOI URL |
[8] |
TANG Y T, QIU R L, ZENG X W, et al., 2009. Lead,zinc,cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environmental and Experimental Botany, 66(1): 126-134.
DOI URL |
[9] | SHU H W, ZHOU Q X, WANG X, 2005. Identification of weed plants excluding the uptake of heavy metals[J]. Environment International, 3l(6): 829-834. |
[10] |
VACULIK M, KONLECHNER C, LANGER I, et al., 2012. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J]. Environmental Pollution, 163: 117-126.
DOI URL |
[11] |
WILSON C V, ANDERSON C, RODRIGUEZLOPEZ M, et al., 2011. Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L.[J]. Minerals Engineering, 24(13): 1488-1494.
DOI URL |
[12] | 陈昌东, 张安宁, 腊明, 等, 2019. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征[J]. 生态环境学报, 28(6): 1216-1223. |
CHEN C D, ZHANG A N, LA M, et al., 2019. Soil heavy metal contamination and enrichment of dominant plants in coal waste piles in pingdingshan area[J]. Ecology and Environmental Sciences, 28(6): 1216-1223. | |
[13] | 陈牧霞, 地里拜尔∙苏力坦, 杨潇, 等, 2007. 新疆污灌区重金属含量及形态研究[J]. 旱区资源与环境, 21(1): 150-154. |
CHEN M X, Dilibar Sultan, YANG X, et al., 2007. Research on concentration and chemical speciation of heavy metal sin sewage irrigated soil of Xinjiang[J]. Journal of Arid Land Resources and Environment, 21(1): 150-154. | |
[14] | 陈勤, 沈羽, 方炎明, 等, 2014. 紫湖溪流域重金属污染风险与植物富集特征[J]. 农业工程学报, 30(14): 198-205. |
CHEN Q, SHEN Y, FANG Y M, et al., 2014. Heavy metals pollution risk and characteristics of plant accumulation along Zihu River[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(14): 198-205. | |
[15] | 陈岩, 季宏兵, 朱先芳, 等, 2012. 北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J]. 农业环境科学学报, 31(11): 2142-2151. |
CHEN Y, JI H B, ZHU X F, et al., 2012. Fraction distribution and risk assessment of Heavy Metals in soils around the gold mine of Detiangou-Qifengcha, Beijingcity, China[J]. Journal of Agro- Environment Science, 31(11): 2142-2151. | |
[16] | 甘龙, 罗玉红, 李晓玲, 等, 2018. Cd胁迫下一年蓬的生长、Cd积累及叶绿素荧光特性[J]. 武汉大学学报 (理学版), 64(1): 70-78. |
GAN L, LUO Y H, LI X L, et al,. 2018. Growth, Cd Accumulation, and chlorophyll fluorescence characteristic of erigeron annuus under Cd stress[J]. Journal of Wuhan University (Natural Science Edition), 64(1): 70-78. | |
[17] | 高陈玺, 李川, 彭娟, 等, 2013. 湘南东湘桥锰矿废弃地植物资源调查与重金属富集植物筛选[J]. 三峡环境与生态, 35(1): 15-20, 24. |
GAO C X, LI C, PENG J, et al., 2013. Screening for heavy metal accumulator among plant resources in Dongxiangqiao manganese mine area of southern Hunan[J]. Environment and Ecology in the Three Gorges, 35(1): 15-20, 24. | |
[18] | 苟体忠, 宋伟, 严红光, 2021. 丹寨汞(金)矿区11种本地植物的重金属富集特征[J]. 生物学杂志, 38(1): 72-76. |
GOU T Z, SONG W, YAN H G, 2021. Accumulation of heavy metal in 11 native plants growing in mercury (gold) mining area of Danzhai County[J]. Journal of Biology, 38(1): 72-76. | |
[19] | 谷雨, 蒋平, 谭丽, 等, 2019. 6种植物对土壤中镉的富集特征研究[J]. 中国农学通报, 35(30): 119-123. |
GU Y, JIANG P, TAN L, et al., 2019. Enrichment characteristics of cadmium by six plants in soil[J]. Chinese Agricultural Science Bulletin, 35(30): 119-123. | |
[20] | 何东, 邱波, 彭尽晖, 等, 2013. 湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征[J]. 环境科学, 34(9): 3595-3600. |
HE D, QIU B, PENG J H, et al., 2013. Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province[J]. Environmental Science, 34(9): 3595-3600. | |
[21] | 何绪文, 王宇翔, 房增强, 等, 2016. 铅锌矿区土壤重金属污染特征及污染风险评价[J]. 环境工程技术学报, 6(5): 476-483. |
HE X W, WANG Y X, FANG Z Q,et a1., 2016. Pollution characteristics and pollution risk evaluation of heavy metals in soil of lead-zinc mining area[J]. Journal of Environmental Engineering Technology, 6(5): 476-483. | |
[22] | 黄小娟, 江长胜, 郝庆菊, 2014. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报, 34(15): 4201-4211. |
HUANG X J, JIANG C H, HAO Q J, 2014. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing[J]. Acta Ecologica Sinica, 34(15): 4201-4211. | |
[23] | 蒋宗宏, 陆凤, 马先杰, 等, 2020. 贵州铜仁典型锰矿区土壤及蔬菜重金属污染特征及健康风险评价[J]. 农业资源与环境学报, 37(2): 293-300. |
JIANG Z H, LU F, MA X J, et al., 2020. Characteristics and health risk assessments of heavy metals in soils and vegetables in manganese mining areas in Tongren County, Guizhou Province China[J]. Journal of Agricultural Resources and Environment, 37(2): 293-300. | |
[24] | 李凤梅, 杨胜香, 曹建兵, 2017. 湘西典型锰渣库主要优势植物种类及重金属耐性特征[J]. 重庆师范大学学报(自然科学版), 34(4): 113-119. |
LI F M, YANG S X, CAO J B, 2017. Species and heavy metal tolerance of main dominant plants in manganese mine tailings, Xiangxi[J]. Journal of Chongqing Normal University (Natural Science), 34(4): 113-119. | |
[25] | 李俊凯, 张丹, 周培, 等, 2018. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征[J]. 环境科学, 39(8): 3845-3853. |
LI J Ki, ZHANG D, ZHOU P, et al., 2018. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing[J]. Environmental Science, 39(8): 3845-3853. | |
[26] | 李礼, 刘灿, 徐龙君, 2017. 重庆秀山锰矿废弃地优势种植物调查分析[J]. 湖南生态科学学报, 4(3): 19-25. |
LI L, LIU C, XU L J, 2017. Investigation and analysis of dominant plants at Xiushan manganese mine wasteland in Chongqing[J]. Journal of Hunan Ecological Science, 4(3): 19-25. | |
[27] | 李思亮, 杨斌, 陈燕, 等, 2016. 浙江省铅锌矿区土壤重金属污染及重金属超富集植物筛选[J]. 环境污染与防治, 38(5): 48-54. |
LI S L, YANG B, CHEN Y, et al., 2016. Study of soil heavy metal pollution and screen of heavy metal hyper-accumulation plants in lead-zinc mine areas of Zhejiang Province[J]. Environmental Pollution & Control, 38(5): 48-54. | |
[28] | 李艺, 李明顺, 赖燕平, 等, 2008. 广西思荣锰矿复垦区的重金属污染影响与生态恢复探讨[J]. 农业环境科学学报, 27(6): 2172-2177. |
LI Y, LI M S, LAI Y P, et al., 2008. Impact of heavy metal contamination in the reclaimed Mn Mineland in si-rong, Guangxi and suggestions for ecological restoration[J]. Journal of Agro-Environment Science, 27(6): 2172-2177. | |
[29] | 林杨, 文仕知, 王德明, 2014. 湘锰国家矿山公园植被恢复重建研究[J]. 北方园艺 (8): 74-80. |
LIN Y, WEN S Z, WANG D M, 2014. Study of vegetation restoration and rebuilding of Xiangmeng State Mine Park[J]. Northern Horticulture (8): 74-80. | |
[30] | 刘亚峰, 龙胜桥, 邵树勋, 2018. 碎米荠对硒、镉超富集特性研究[J]. 地球与环境, 46(2): 173-178. |
LIU Y F, LONG S Q, SHAO S X, 2018. A study on hyperaccumulation of Se and Cd in Cardamine violifolia[J]. Earth and Environment, 46(2): 173-178. | |
[31] | 陆金, 赵兴青, 黄健, 等, 2019. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征[J]. 环境化学, 38(1): 78-86. |
LU J, ZHAO X Q, HUANG J, et al., 2019. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling[J]. Environmental Chemistry, 38(1): 78-86. | |
[32] | 罗为桂, 刘四喜, 段海风, 等, 2012. 普通商陆耐锰特性研究及除锰能力评估[J]. 湖南农业科学, (23): 42-44, 48. |
LUO W G, LIU S X, DUAN H F, et al., 2012. Characteristics of manganese tolerance of normal phytolacca acinosa roxb. and its capacity of removing manganese from soil[J]. Hunan Agricultural Sciences (23): 42-44, 48. | |
[33] | 马驰, 张遂, 郭琪, 2018. 贵州松桃锰矿床地质条件及资源开采技术探索[J]. 贵州地质, 35(4):383-388,392. |
MA C, ZHANG S, GUO Q, 2018. Geological condition and minging technique exploration of Songtao manganese deposit in Guizhou[J]. Guizhou Geology, 35(4): 383-388, 392. | |
[34] | 宋清海, 蔡信德, 吴颖欣, 等, 2019. 香根草对污染土壤水溶态重金属组分胁迫响应研究[J]. 农业环境科学学报, 38(12): 2715-2722. |
SONG Q H, CAI X D, WU Y X, et al., 2019. Response of Vetiveria zizanioides to the stress of water-soluble components of heavy metals in contaminated soil[J]. Journal of Agro-Environment Science, 38(12): 2715-2722. | |
[35] | 王学锋, 陈亚青, 马鑫, 等, 2013. 某工业区排污河道周边植物重金属富集特征[J]. 环境科学与技术, 36(1): 74-78. |
WANG X F, CHEN Y Q, MA X, et al., 2013. Heavy metal in plants around drainage waterway of an industrial zone: characteristics of absorption and accumulation[J]. Environmental Science & Technology, 36(1): 74-78. | |
[36] | 邢丹, 刘鸿雁, 于萍萍, 等, 2012. 黔西北铅锌矿区植物群落分布及其对重金属的迁移特征[J]. 生态学报, 32(3): 796-804. |
XING D, LIU H Y, YU P P, et al., 2012. The plant community distribution and migration characteristics of heavy metals in tolerance dominant species in lead/zinc mine areas in Northwestern Guizhou Province[J]. Acta Ecologica Sinica, 32(3): 796-804.
DOI URL |
|
[37] | 熊云武, 唐彪, 林晓燕, 等, 2016. 湘西锰矿区土壤重金属含量及优势植物吸收特征[J]. 安徽农业科学, 44(8): 84-87, 95. |
XIONG Y W, TANG B, LIN X Y, et al., 2016. Soil heavy metals content and dominant plants absorption characteristics in Xiangxi manganese mining area[J]. Journal of Anhui Agricultural Sciences, 44(8): 84-87, 95. | |
[38] | 徐华伟, 张仁陟, 谢永, 2009. 铅锌矿区先锋植物野艾蒿对重金属的吸收与富集特征[J]. 农业环境科学学报, 28(6): 1136-1141. |
XU H W, ZHANG R Z, XIE Y, 2009. Accumulation and distribution of heavy metals in Artemisia lavandulaefolia at lead-zinc mining area[J]. Journal of Agro-Enviromnent Science, 28(6): 1136-1141. | |
[39] | 薛生国, 陈英旭, 林琦, 等, 2003. 中国首次发现的锰超积累植物商陆[J]. 生态学报, 23(5): 935-937. |
XUE D G, CHEN Y X, LIN Q, 2003. Phytolacca acinosa Roxb. (Phytolaccaceae): A new manganese hyperaccumulator plant from Southern China[J]. Acta Ecologica Sinica, 23(5): 935-937. | |
[40] | 严莲英, 范成五, 赵振宇, 等, 2017. 黔北轻污染耕地12种优势杂草重金属含量及富集特征[J]. 草业学报, 26(10): 237-244. |
YAN L Y, FAN C G, ZHAO Z Y, et al., 2017. Heavy metal absorption and enrichment characteristics of dominant weed species naturally growing on farmland in Northern Guizhou[J]. Acta Prataculturae Sinica, 26(10): 237-244. | |
[41] | 杨贤均, 刘可慧, 李艺, 等, 2017. 锰污染土壤对酸模叶蓼氮素代谢的影响[J]. 生态环境学报, 26(10): 1776-1781. |
YANG X J, LIU K H, LI Y, et al., 2017. Effects of Manganese Contaminated Soil on Nitrogen Metabolism of Manganese Hyperaccumulator Polygonum lapathifolium L.[J]. Ecology and Environmental Sciences, 26(10): 1776-1781. | |
[42] | 杨贤均, 刘可慧, 刘华, 等, 2016. 锰污染对酸模叶蓼生长、锰吸收及抗氧化物活性的影响[J]. 植物科学学报, 34(6): 926-933. |
YANG X J, LIU K H, LIU H, et al., 2016. Effects of manganese contamination on the growth, Mn accumulation and antioxidants of Polygonum lapathifolium Linn[J]. Plant Science Journal, 34(6): 926-933. | |
[43] | 阳雨平, 杨田杰, 陈国国, 2019. 湘南某钨矿区土壤重金属污染评价与植物修复研究[J]. 安全与环境学报, 19(5): 1752-1760. |
YANG Y P, YANG T J, CHEN G G, 2019. Evaluation of soil heavy metal pollution and phytoremediation in a tungsten mine in southern part of Hunan[J]. Journal of Safety and Environment, 19(5): 1752-1760. | |
[44] | 袁宇飞, 李瑞平, 李光德, 等, 2012. 锌对汞胁迫下小麦种子萌发的影响[J]. 农业环境科学学报, 31(2): 259-264. |
YUAN Y F, LI R P, LI G D, et al., 2012. Effects of Zn on Seed Germination of Wheat Under Hg Stress[J]. Journal of Agro-Environment Science, 31(2): 259-264 | |
[45] | 张栋栋, 李萌, 甘龙, 等, 2019. 重金属Cd-Cu复合污染对苍耳生长及叶绿素荧光特性的影响[J]. 武汉大学学报 (理学版), 65(1): 66-76. |
ZHANG D D, LI M, GAN L, et al., 2019. Effects of heavy metal Cd-Cu combined pollution on the growth and fluorescence characteristics of Xanthium sibiricum Patrin ex Widder[J]. Journal of Wuhan University (Natural Science Edition), 65(1): 66-76. | |
[46] | 中国环境监测总站, 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社: 230-434. |
Central Station of Environmental Monitoring of China, 1990. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press: 230-434. | |
[47] | 马驰, 张遂, 郭琪, 2018. 贵州松桃锰矿床地质条件及资源开采技术探[J]. 贵州地质, 35(4): 383-388, 392. |
MA C, ZHANG S, GUO Q, 2018. Geological Condition and Minging Technique Exploration of Songtao Manganese Deposit in Guizhou[J]. Guizhou Geology, 35(4): 383-388, 392. | |
[48] | 祝滔, 江长胜, 郝庆菊, 等, 2012. 重庆秀山锰矿区土壤和植物锰污染调查与评价[J]. 环境科学与技术, 35(9): 167-172. |
ZHU T, JIANG C S, HAO Q J, et al., 2012. Investigation and assessment of contaminated soils and plants by Mn in manganese mining area in Xiushan Autonomous County of Chongqing[J]. Environmental Science & Technology, 35(9): 167-172. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[5] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[6] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[7] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[8] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[9] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[10] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[11] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[12] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[13] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[14] | 黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252. |
[15] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||