Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (11): 1770-1777.DOI: 10.16258/j.cnki.1674-5906.2025.11.010
• Research Article [Environmental Science] • Previous Articles Next Articles
LIANG Yadi1(
), YAO Xuewen1, LI Hanbo1, CHEN Zhihuai1, LI Hongbo2, OUYANG Minghan1, LUO Xiaosan1,*(
)
Received:2025-04-04
Online:2025-11-18
Published:2025-11-05
梁亚迪1(
), 姚雪雯1, 李涵博1, 陈志怀1, 历红波2, 欧阳铭韩1, 罗小三1,*(
)
通讯作者:
E-mail: 作者简介:梁亚迪(1997年生),女,硕士研究生,研究方向为大气环境与健康。E-mail:15236265027@163.com
基金资助:CLC Number:
LIANG Yadi, YAO Xuewen, LI Hanbo, CHEN Zhihuai, LI Hongbo, OUYANG Minghan, LUO Xiaosan. The Content Characteristics, Ecological and Human Health Risk Assessments of Heavy Metals in Typical Tire Wear Particles (TWPs)[J]. Ecology and Environmental Sciences, 2025, 34(11): 1770-1777.
梁亚迪, 姚雪雯, 李涵博, 陈志怀, 历红波, 欧阳铭韩, 罗小三. 典型轮胎磨损颗粒中重金属的含量特征及生态和健康风险评估[J]. 生态环境学报, 2025, 34(11): 1770-1777.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.11.010
| 样品编号 | 轮胎规格型号 | 速度等级 | 车型 |
|---|---|---|---|
| 1 | 26x1.95 | 自行车 | |
| 2 | 70/80-10 | J | 摩托车 |
| 3 | 175/65R15 | H | 乘用汽车 |
| 4 | 185/60R15 | H | |
| 5 | 205/55R16 | W | |
| 6 | 205/55R16 | V | |
| 7 | 225/65R17 | V | |
| 8 | 175/70R14LT | S | |
| 9 | 175/70R14 | H | |
| 10 | 7.00R16 | M | 轻型卡车 |
| 11 | 12R22.5 | L | 重型卡车 |
Table 1 Parameters of 11 types of tires selected for the tread wearing experiment
| 样品编号 | 轮胎规格型号 | 速度等级 | 车型 |
|---|---|---|---|
| 1 | 26x1.95 | 自行车 | |
| 2 | 70/80-10 | J | 摩托车 |
| 3 | 175/65R15 | H | 乘用汽车 |
| 4 | 185/60R15 | H | |
| 5 | 205/55R16 | W | |
| 6 | 205/55R16 | V | |
| 7 | 225/65R17 | V | |
| 8 | 175/70R14LT | S | |
| 9 | 175/70R14 | H | |
| 10 | 7.00R16 | M | 轻型卡车 |
| 11 | 12R22.5 | L | 重型卡车 |
| 元素 | Zn | Mn | Cu | Cd | Cr | Ni | Pb | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 参考值 | 65.0 | 622 | 20.0 | 110 | 54.0 | 22.0 | 22.0 | 史长义等, |
Table 2 Background reference values of heavy metals in sediments mg?kg?1
| 元素 | Zn | Mn | Cu | Cd | Cr | Ni | Pb | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 参考值 | 65.0 | 622 | 20.0 | 110 | 54.0 | 22.0 | 22.0 | 史长义等, |
| IER, i | IER | 风险分级标准 |
|---|---|---|
| IER, i <40 | IER<150 | 轻微 |
| 40≤ IER, i <80 | 150≤IER<300 | 中等 |
| 80≤ IER, i <160 | 300≤IER<600 | 强 |
| 160≤ IER, i <320 | 600≤IER<1200 | 很强 |
| 320≤ IER, i | 1200≤IER | 极强 |
Table 3 Potential ecological risk grading criteria for pollutants in sediments
| IER, i | IER | 风险分级标准 |
|---|---|---|
| IER, i <40 | IER<150 | 轻微 |
| 40≤ IER, i <80 | 150≤IER<300 | 中等 |
| 80≤ IER, i <160 | 300≤IER<600 | 强 |
| 160≤ IER, i <320 | 600≤IER<1200 | 很强 |
| 320≤ IER, i | 1200≤IER | 极强 |
| 参数 | 含义 | 单位 | 儿童(ch)取值 | 成人(a)取值 |
|---|---|---|---|---|
| F | 暴露频率 | d∙a−1 | 180 | 180 |
| Y | 暴露年限 | a | 6 | 24 |
| W | 平均体重 | kg | 24.5 | 60.1 |
| DH | 非致癌平均暴露时间 | d | Y | Y |
| DC | 致癌平均暴露时间 | d | 74.8 | 74.8 |
| FPE | 灰尘颗粒物排放因子 | m3∙kg−1 | 1.36×109 | 1.36×109 |
| RR | 吸入率 | m3∙d−1 | 9.3 | 16.3 |
Table 4 Average exposure parameters for the dust inhalation
| 参数 | 含义 | 单位 | 儿童(ch)取值 | 成人(a)取值 |
|---|---|---|---|---|
| F | 暴露频率 | d∙a−1 | 180 | 180 |
| Y | 暴露年限 | a | 6 | 24 |
| W | 平均体重 | kg | 24.5 | 60.1 |
| DH | 非致癌平均暴露时间 | d | Y | Y |
| DC | 致癌平均暴露时间 | d | 74.8 | 74.8 |
| FPE | 灰尘颗粒物排放因子 | m3∙kg−1 | 1.36×109 | 1.36×109 |
| RR | 吸入率 | m3∙d−1 | 9.3 | 16.3 |
| 参数 | 单位 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| RRf, i | mg∙kg−1∙d−1 | 0.3 | 1.43×10−5 | 4.02×10−2 | 5.7×10−6 | 2.86×10−5 | 2.06×10−2 | 3.52×10−3 |
| RSF, i | (mg∙kg−1∙d−1)−1 | 7.05 | 42 | 0.84 |
Table 5 Reference dose (RRf, i) and oncogenic slope factor (RSF, i) of heavy metals in particulate matter by inhalation exposure)
| 参数 | 单位 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| RRf, i | mg∙kg−1∙d−1 | 0.3 | 1.43×10−5 | 4.02×10−2 | 5.7×10−6 | 2.86×10−5 | 2.06×10−2 | 3.52×10−3 |
| RSF, i | (mg∙kg−1∙d−1)−1 | 7.05 | 42 | 0.84 |
| 车型 | IER, i | IER | ||||||
|---|---|---|---|---|---|---|---|---|
| Zn | Mn | Cu | Cd | Cr | Ni | Pb | ||
| 自行车 | 2.43 | 0.03 | 2.35 | 0.51 | 0.45 | 1.49 | 2.29 | 9.55 |
| 摩托车 | 2.81 | 0.05 | 6.22 | 0.50 | 2.26 | 4.30 | 3.39 | 19.5 |
| 乘用汽车 | 6.23 | 0.03 | 5.27 | 0.23 | 0.72 | 1.89 | 4.21 | 18.6 |
| 轻型货车 | 5.85 | 0.06 | 4.53 | 0.23 | 0.74 | 2.80 | 6.51 | 20.7 |
| 重型货车 | 5.47 | 0.11 | 10.6 | 4.59 | 0.78 | 4.70 | 11.6 | 37.9 |
Table 6 Ecological risks of heavy metals in TWPs of different types of tire treads
| 车型 | IER, i | IER | ||||||
|---|---|---|---|---|---|---|---|---|
| Zn | Mn | Cu | Cd | Cr | Ni | Pb | ||
| 自行车 | 2.43 | 0.03 | 2.35 | 0.51 | 0.45 | 1.49 | 2.29 | 9.55 |
| 摩托车 | 2.81 | 0.05 | 6.22 | 0.50 | 2.26 | 4.30 | 3.39 | 19.5 |
| 乘用汽车 | 6.23 | 0.03 | 5.27 | 0.23 | 0.72 | 1.89 | 4.21 | 18.6 |
| 轻型货车 | 5.85 | 0.06 | 4.53 | 0.23 | 0.74 | 2.80 | 6.51 | 20.7 |
| 重型货车 | 5.47 | 0.11 | 10.6 | 4.59 | 0.78 | 4.70 | 11.6 | 37.9 |
| 人群 | 车型 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| 儿童 | 自行车 | 7.24×10−8 | 1.50×10−4 | 3.24×10−8 | 4.50×10−5 | 5.86×10−5 | 4.39×10−8 | 3.94×10−7 |
| 摩托车 | 8.37×10−8 | 3.23×10−4 | 8.56×10−8 | 4.41×10−5 | 2.94×10−4 | 1.26×10−7 | 5.82×10−7 | |
| 乘用汽车 | 1.86×10−7 | 1.94×10−4 | 7.25×10−8 | 2.01×10−5 | 9.34×10−5 | 5.54×10−8 | 7.24×10−7 | |
| 轻型货车 | 1.74×10−7 | 3.33×10−4 | 6.23×10−8 | 2.04×10−5 | 9.65×10−5 | 8.23×10−8 | 1.12×10−6 | |
| 重型货车 | 1.63×10−7 | 6.52×10−4 | 1.47×10−7 | 4.07×10−4 | 1.01×10−4 | 1.38×10−7 | 2.00×10−6 | |
| 成人 | 自行车 | 5.18×10−8 | 1.07×10−4 | 2.30×10−8 | 3.21×10−5 | 4.18×10−5 | 3.14×10−8 | 2.81×10−7 |
| 摩托车 | 5.98×10−8 | 2.30×10−4 | 6.08×10−8 | 3.15×10−5 | 2.10×10−4 | 9.03×10−8 | 4.16×10−7 | |
| 乘用汽车 | 1.33×10−7 | 1.39×10−4 | 5.15×10−8 | 1.44×10−5 | 6.67×10−5 | 3.96×10−8 | 5.18×10−7 | |
| 轻型货车 | 1.25×10−7 | 2.38×10−4 | 4.43×10−8 | 1.45×10−5 | 6.90×10−5 | 5.88×10−8 | 8.00×10−7 | |
| 重型货车 | 1.16×10−7 | 4.65×10−4 | 1.04×10−7 | 2.90×10−4 | 7.23×10−5 | 9.87×10−8 | 1.43×10−6 |
Table 7 Non-cancer hazard quotients (QH) for heavy metals in different types of TWPs by inhalation exposure pathway
| 人群 | 车型 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| 儿童 | 自行车 | 7.24×10−8 | 1.50×10−4 | 3.24×10−8 | 4.50×10−5 | 5.86×10−5 | 4.39×10−8 | 3.94×10−7 |
| 摩托车 | 8.37×10−8 | 3.23×10−4 | 8.56×10−8 | 4.41×10−5 | 2.94×10−4 | 1.26×10−7 | 5.82×10−7 | |
| 乘用汽车 | 1.86×10−7 | 1.94×10−4 | 7.25×10−8 | 2.01×10−5 | 9.34×10−5 | 5.54×10−8 | 7.24×10−7 | |
| 轻型货车 | 1.74×10−7 | 3.33×10−4 | 6.23×10−8 | 2.04×10−5 | 9.65×10−5 | 8.23×10−8 | 1.12×10−6 | |
| 重型货车 | 1.63×10−7 | 6.52×10−4 | 1.47×10−7 | 4.07×10−4 | 1.01×10−4 | 1.38×10−7 | 2.00×10−6 | |
| 成人 | 自行车 | 5.18×10−8 | 1.07×10−4 | 2.30×10−8 | 3.21×10−5 | 4.18×10−5 | 3.14×10−8 | 2.81×10−7 |
| 摩托车 | 5.98×10−8 | 2.30×10−4 | 6.08×10−8 | 3.15×10−5 | 2.10×10−4 | 9.03×10−8 | 4.16×10−7 | |
| 乘用汽车 | 1.33×10−7 | 1.39×10−4 | 5.15×10−8 | 1.44×10−5 | 6.67×10−5 | 3.96×10−8 | 5.18×10−7 | |
| 轻型货车 | 1.25×10−7 | 2.38×10−4 | 4.43×10−8 | 1.45×10−5 | 6.90×10−5 | 5.88×10−8 | 8.00×10−7 | |
| 重型货车 | 1.16×10−7 | 4.65×10−4 | 1.04×10−7 | 2.90×10−4 | 7.23×10−5 | 9.87×10−8 | 1.43×10−6 |
| 车型 | Cd | Cr | Ni |
|---|---|---|---|
| 自行车 | 5.95×10−10 | 2.18×10−8 | 2.35×10−10 |
| 摩托车 | 5.83×10−10 | 1.09×10−7 | 6.77×10−10 |
| 乘用汽车 | 2.67×10−10 | 3.47×10−8 | 2.97×10−10 |
| 轻型货车 | 2.69×10−10 | 3.59×10−8 | 4.41×10−10 |
| 重型货车 | 5.38×10−9 | 3.76×10−8 | 7.40×10−10 |
Table 8 Lifetime cancer risk values (ICR, i) for heavy metals in different types of TWPs by inhalation exposure pathway
| 车型 | Cd | Cr | Ni |
|---|---|---|---|
| 自行车 | 5.95×10−10 | 2.18×10−8 | 2.35×10−10 |
| 摩托车 | 5.83×10−10 | 1.09×10−7 | 6.77×10−10 |
| 乘用汽车 | 2.67×10−10 | 3.47×10−8 | 2.97×10−10 |
| 轻型货车 | 2.69×10−10 | 3.59×10−8 | 4.41×10−10 |
| 重型货车 | 5.38×10−9 | 3.76×10−8 | 7.40×10−10 |
Figure 2 Non-cancer total hazard index (IH) and lifetime cancer total risk index (ICR) of heavy metals in different types of TWPs by inhalation exposure pathway
| [1] | ANGON P B, ISLAM M S, KC S, et al., 2024. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain[J]. Heliyon, 10(7): e28357. |
| [2] |
BOUREDJI A, POURCHEZ J, FOREST V, 2023. Biological effects of Tire and Road Wear Particles (TRWP) assessed by in vitro and in vivo studies: A systematic review[J]. Science of The Total Environment, 894: 164989.
DOI URL |
| [3] |
BAUTISTA C J, ARANGO N, PLATA C, et al., 2024. Mechanism of cadmium-induced nephrotoxicity[J]. Toxicology, 502: 153726.
DOI URL |
| [4] |
CAMPONELLI K. M, CASEY R E, SNODGRASS J W, et al., 2009. Impacts of weathered tire debris on the development of Rana sylvatica larvae[J]. Chemosphere, 74(5): 717-722.
DOI PMID |
| [5] |
CAO G D, WANG W, ZHANG J, et al., 2022. New evidence of rubber-derived quinones in water, air, and soil[J]. Environmental Science & Technology, 56(7): 4142-4150.
DOI URL |
| [6] |
COUNCELL T B, DUCKENFIELD K U, LANDA E R, et al., 2004. Tire-wear particles as a source of zinc to the environment[J]. Environmental Science & Technology, 38(15): 4206-4214.
DOI URL |
| [7] |
CHEN L, FANG L C, YANG X, et al., 2024. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective[J]. Environment International, 187: 108708.
DOI URL |
| [8] |
DING J, LV M, WANG Q N, et al., 2023. Brand-specific toxicity of tire tread particles helps identify the determinants of toxicity[J]. Environmental Science & Technology, 57(30): 11267-11278.
DOI URL |
| [9] |
GOUTAM MUKHERJEE A, RAMESH WANJARI U, RENU K, et al., 2022. Heavy metal and metalloid-induced reproductive toxicity[J]. Environmental Toxicology and Pharmacology, 92: 103859.
DOI URL |
| [10] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control of sediment ecological approach[J]. Water Research, 14(8): 975-1000.
DOI URL |
| [11] | KENNEDY P, GADD J, 2003. Preliminary examination of trace elements in tyres, brake pads, and road bitumen in New Zealand[R]. Ministry of Transport, New Zealand. |
| [12] |
KOUJI A, YOSHIAKI T, 2004. Characterization of heavy metal particles embedded in tire dust[J]. Environment International, 30(8): 1009-1017.
PMID |
| [13] |
KNIGHT L J, PARKER-JURD F N F, AL-SID-CHEIKH M, et al., 2020. Tyre wear particles: An abundant yet widely unreported microplastic?[J]. Environmental Science and Pollution Research 27(15): 18345-18354.
DOI |
| [14] |
LI Y T, SHI T, LI X, et al., 2022. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement[J]. Environment International, 164: 107257.
DOI URL |
| [15] | LING C Y, HIRVI J T, MARKKULA K, et al., 2018. Computational approach to study the influence of Mn, Fe, and Ni as additives toward rubber-brass adhesion[J]. Theoretical Chemistry Accounts, 137(5): 64. |
| [16] |
LIU Z, SUN Y J, WANG J Q, et al., 2022. In vitro assessment reveals the effects of environmentally persistent free radicals on the toxicity of photoaged tire wear particles[J]. Environmental Science & Technology, 56(3): 1664-1674.
DOI URL |
| [17] |
LIU M X, XU H M, FENG R, et al., 2023. Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China[J]. Environmental Pollution, 330: 121835.
DOI URL |
| [18] |
LUO Z X, ZHOU X Y, SU Y, et al., 2021. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles[J]. Science of The Total Environment, 795: 148902.
DOI URL |
| [19] |
LUO X S, DING J, XU B, et al., 2012. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils[J]. Science of The Total Environment, 424: 88-96.
DOI URL |
| [20] |
MA Y K, DEILAMI K, EGODAWATTA P, et al., 2019. Creating a hierarchy of hazard control for urban stormwater management[J]. Environmental Pollution, 255(Part 1): 113217.
DOI URL |
| [21] | MARING T, KUMAR S, JHA A K, et al., 2023. Airborne particulate matter and associated heavy metals: A review[J]. Macromolecular Symposia, 407(1): 2100487. |
| [22] |
MCCARTY K, MIAN H R, CHHIPI-SHRESTHA G, et al., 2023. Ecological risk assessment of tire and road wear particles: A preliminary screening for freshwater sources in Canada[J]. Environmental Pollution, 325: 121354.
DOI URL |
| [23] |
PAN Z, GONG T, LIANG P, 2024. Heavy metal exposure and cardiovascular disease[J]. Circulation Research, 134(9): 1160-1178.
DOI PMID |
| [24] |
PERKINS A N, INAYAT-HUSSAIN S H, DEZIEL N C, et al., 2019. Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber[J]. Environmental Research, 169: 163-172.
DOI PMID |
| [25] |
POMA A, VECCHIOTTI G, COLAFARINA S, et al., 2019. Exposure to particle debris generated from passenger and truck tires induces different genotoxicity and inflammatory responses in the RAW 264.7 cell line[J]. PloS One, 14(9): e0222044.
DOI URL |
| [26] |
PANKO J M, CHU J, KREIDER M L, et al., 2013. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States[J]. Atmospheric Environment, 72: 192-199.
DOI URL |
| [27] |
SHAO Y T, ZHENG L T, JIANG Y G, 2024. Cadmium toxicity and autophagy: A review[J]. BioMetals, 37(3): 609-629.
DOI PMID |
| [28] | SINGH V, SINGH N, VAMANU E, et al., 2022. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity[J]. Antioxidants, 11(12): 2375. |
| [29] |
SMOLDERS E, DEGRYSE F, 2002. Fate and effect of zinc from tire debris in soil[J]. Environmental Science & Technology, 36(17): 3706-3710.
DOI URL |
| [30] |
TRAN-NGUYEN Q A, LE T M, NGUYEN, H N Y, et al., 2024. Microplastics in the surface water of urban lakes in central Vietnam: Pollution level, characteristics, and ecological risk assessment[J]. Case Studies in Chemical and Environmental Engineering, 9: 100622.
DOI URL |
| [31] | US EPA, 2011. Exposure Factors Handbook. Office of Research and Development, U.S[S]. Environmental Protection Agency (US EPA), Washington, DC. |
| [32] | US EPA, 2022. Regional Screening Levels (RSLs)-Equations[S]. U.S. Environmental Protection Agency (US EPA), Washington, DC. |
| [33] |
WANG H, MATSUSHITA M T, 2021. Heavy metals and adult neurogenesis[J]. Current Opinion in Toxicology, 26: 14-21.
DOI URL |
| [34] | WINZ R, YU L L, SUNG L P, et al., 2023. Assessing children’s potential exposures to harmful metals in tire crumb rubber by accelerated photodegradation weathering[J]. Scientific Reports, 13(1): 13877. |
| [35] |
YI Y J, YANG Z F, ZHANG S H, 2011. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 159(10): 2575-2585.
DOI PMID |
| [36] |
YAN R H, PENG X, LIN W Q, et al., 2022. Trends and challenges regarding the source-specific health risk of PM2.5-bound metals in a Chinese megacity from 2014 to 2020[J]. Environmental Science & Technology, 56(11): 6996-7005.
DOI URL |
| [37] |
ZHANG D, LI H H, LUO X S, et al., 2022. Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city[J]. Process Safety and Environmental Protection, 162: 859-866.
DOI URL |
| [38] | ZHONG C Z, SUN J X, ZHANG J, et al., 2024. Characteristics of vehicle tire and road wear particles’ size distribution and influencing factors examined via laboratory test[J]. Atmosphere, 15(4): 423. |
| [39] | 陈瑶, 刘金, 张颖昕, 等, 2022. 环境老化对轮胎磨损颗粒内源重金属释放的影响[J]. 天津科技大学学报, 37(2): 12-17, 70. |
| CHEN Y, LIU J, ZHANG Y X, et al., 2022. Effect of environmental aging on the release of endogenous heavy metals from tire wear particles[J]. Journal of Tianjin University of Science & Technology, 37(2): 12-17, 70. | |
| [40] | 史长义, 梁萌, 冯斌, 2016. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 41(2): 234-251. |
| SHI C Y, LIANG M, FENG B, 2016. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 41(2): 234-251. | |
| [41] | 付佳祺, 杨馨蕊, 李坤禹, 等, 2024. 氧化锌在橡胶生产中的应用综述[J]. 煤炭与化工, 47(8): 134-136. |
| FU J Q, YANG X R, LI K Y, et al., 2024. Application of zinc oxide in rubber production[J]. Coal and Chemical Industry, 47(8): 134-136. | |
| [42] | 焦萌, 曹秉帝, 张涛, 等, 2020. 环境中的轮胎磨损颗粒: 从路面到海洋[J]. 环境科学学报, 40(12): 4263-4278. |
| JIAO M, CAO B D, ZHANG T, et al., 2020. Tire wear particles in the environment: From road to ocean[J]. Acta Scientiae Circumstantiae, 40(12): 4263-4278. | |
| [43] | 吴琳, 张新峰, 门正宇, 等, 2020. 机动车轮胎磨损颗粒物化学组分特征研究[J]. 中国环境科学, 40(4): 1486-1492. |
| WU L, ZHANG X F, MEN Z Y, et al., 2020. The chemical component characteristics of vehicle tire wear particles[J]. China Environmental Science, 40(4): 1486-1492. | |
| [44] | 逄见光, 徐辉, 马松涛, 等, 2025. 不同氧化锌在丁腈橡胶中的应用对比研究[J]. 特种橡胶制品, 46(1): 14-18. |
| PANG J G, XU H, MA S T, et al., 2025. Comparatives study on application of different zinc oxide in nitrile rubber[J]. Special Purpose Rubber Products, 46(1): 14-18. | |
| [45] | 郑鑫程, 王剑凯, 曾晓莹, 等, 2021. 不同车型的颗粒物及其重金属排放分担率研究[J]. 环境科学与技术, 44(7): 60-69. |
| ZHENG X C, WANG J K, ZENG X Y, et al., 2021. Study on the sharing rate of particulate matters and heavy metal emissions of different vehicle types[J]. Environmental Science & Technology, 44(7): 60-69. |
| [1] | LI Xue, WANG Zhen, MAO Xuefei. Effects of Polyethylene and Polypropylene Microplastics on the Growth and Antioxidant Mechanisms of Rice Seedlings under Cadmium Stress [J]. Ecology and Environmental Sciences, 2025, 34(7): 1053-1063. |
| [2] | XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater [J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041. |
| [3] | ZHANG Chuanhua, LIU Li, DAI Jie, LI Manman, ZHANG Fengtai, DENG Ling. Classification and Risk Management of Cultivated Land Environmental Quality Based on Evaluation of Soil Heavy Metal Pollution and Accumulation [J]. Ecology and Environmental Sciences, 2025, 34(2): 311-320. |
| [4] | WANG Caiqin, YANG Qianying, ZHOU Mingyu, ZHANG Daoyong, PAN Xiangliang. Research Progress on the Effects of Microplastics on Pollutant Behavior and Element Cycling in Coastal Wetlands [J]. Ecology and Environmental Sciences, 2025, 34(10): 1519-1531. |
| [5] | HE Yi, QIN Xinxin, ZHANG Xiang, SUN Nan, YANG Yalin, LIAN Junfeng. Heterogeneity of Microplastics Section Distribution: A Case Study of Ganzhou Section of the Ganjiang River [J]. Ecology and Environmental Sciences, 2024, 33(4): 626-632. |
| [6] | LIN Jianhui, LI Pingping, LIU Min, DENG Xi, KANG Zixin, YANG Tao, ZHAN Shuyue, ZENG Yingxu. Biotoxicity of Different Biofilm-coated Microplastics in Gills of Clam Meretrix lyrata [J]. Ecology and Environmental Sciences, 2024, 33(1): 111-118. |
| [7] | CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River [J]. Ecology and Environmental Sciences, 2023, 32(9): 1663-1672. |
| [8] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environmental Sciences, 2023, 32(4): 776-783. |
| [9] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environmental Sciences, 2023, 32(2): 407-420. |
| [10] | LI Chengtao, WU Wanqing, CHEN Chen, ZHANG Yong, ZHANG Kai. Effects of Biodegradable PBAT Microplastics on Soil Physical and Chemical Properties and Physiological Indicators of Brassica chinensis [J]. Ecology and Environmental Sciences, 2023, 32(11): 1964-1977. |
| [11] | LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish [J]. Ecology and Environmental Sciences, 2023, 32(11): 1913-1921. |
| [12] | LI Shuangshuang, CAI Mingcan, WANG Qing, QI Liying, WEI Hehong, WANG Chun. Research Progress on the Interaction Between Microplastics and Biofilms and Their Ecological Effects on Freshwater Environment [J]. Ecology and Environmental Sciences, 2023, 32(11): 2041-2049. |
| [13] | HE Wenxuan, LI Lei, SUN Siyu, LI Chang, LI Jiuyi, TIAN Xiujun. Distribution Characteristics of Microplastics in Water, Sediment and Fish in Beiyun River [J]. Ecology and Environmental Sciences, 2023, 32(11): 1901-1912. |
| [14] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environmental Sciences, 2022, 31(9): 1892-1900. |
| [15] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environmental Sciences, 2022, 31(8): 1590-1598. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn