Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1442-1451.DOI: 10.16258/j.cnki.1674-5906.2025.09.011
• Research Article [Environmental Science] • Previous Articles Next Articles
BAO Xueer1(), BAO Hai1,2,*(
), ZHAO Lingling1, ANG Geilama1
Received:
2025-03-24
Online:
2025-09-18
Published:
2025-09-05
包雪儿1(), 包海1,2,*(
), 赵玲玲1, 昂给拉玛1
通讯作者:
*E-mail: baohai@imnu.edu.cn
作者简介:
包雪儿(2001年生),女,硕士研究生,主要从事生物源挥发性有机物的研究。E-mail: 3311954216@qq.com
基金资助:
CLC Number:
BAO Xueer, BAO Hai, ZHAO Lingling, ANG Geilama. Characteristics of Volatile Organic Compounds Emissions from Crops in the Inner Mongolian Plateau[J]. Ecology and Environmental Sciences, 2025, 34(9): 1442-1451.
包雪儿, 包海, 赵玲玲, 昂给拉玛. 内蒙古高原农作物挥发性有机物排放特征[J]. 生态环境学报, 2025, 34(9): 1442-1451.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.011
有效样品数、BVOCs种类及气象条件1) | 农作物种类、采样日期及其BVOCs排放速率/(µg∙g−1∙h−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米Zea mays L. | 马铃薯Solanum tuberosum L. | 水稻Oryza sativa L. | |||||||||||||
20230715 | 20230716 | 20230717 | 平均值 | 20230720 | 20230722 | 20230723 | 平均值 | 20230814 | 20230815 | 20230816 | 平均值 | ||||
有效样品数 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||||||
异戊二烯 | 25.5-763 | 13.2-249 | 8.72-77.7 | 15.8-363 | 6.20-9.19 | 3.48-37.3 | 3.72-31.8 | 4.47-26.1 | 1.94-8.51 | 8.41-10.1 | 0.73-19.6 | 3.69-12.7 | |||
α−蒎烯 | 0.98-64.6 | 0.67-20.1 | 0.02-0.46 | 0.57-28.4 | 1.12-11.1 | 0.36-20.5 | 0.04-9.74 | 0.51-13.8 | 1.05-10.2 | 0.02-3.09 | 0.08-0.18 | 0.38-4.48 | |||
崁烯 | 0.03-63.4 | 0.20-29.6 | 0.25-0.53 | 0.48-31.6 | 2.55-19.4 | 2.67-34.5 | 0.05-9.09 | 1.76-20.9 | 0.17-3.97 | 0.05-5.94 | 0.03-0.71 | 0.08-3.54 | |||
β−蒎烯 | 0.06-0.35 | 0.46-5.25 | 0.24-1.59 | 0.25-2.40 | 0.20-57.9 | 2.70-36.2 | 0.01-11.9 | 0.97-35.4 | 0.51-3.81 | 0.04-5.79 | 0.06-0.50 | 0.20-3.37 | |||
β−月桂烯 | 0.02-0.25 | 0.99-9.00 | 0.01-0.53 | 0.34-3.26 | 2.60-58.4 | 2.79-34.9 | 2.79-11.9 | 2.73-35.1 | 0.41-3.84 | 0.04-5.38 | 0.06-0.50 | 0.17-3.24 | |||
α−水芹烯 | 0.30-0.51 | 0.23-1.14 | 0.03-5.26 | 0.19-2.30 | 0.13-5.89 | 3.00-8.46 | 0.11-3.16 | 1.08-5.84 | 0.02-0.14 | 0.34-0.74 | 0.04-0.05 | 0.13-0.31 | |||
3−蒈烯 | 0.23-0.37 | 0.10-7.68 | 0.03-2.41 | 0.12-3.49 | 0.07-5.26 | 0.36-1.55 | 0.01-9.55 | 0.15-5.45 | 0.03-0.10 | 0.03-0.97 | 0.01-0.11 | 0.02-0.39 | |||
α−萜品烯 | 0.50-1.38 | 0.06-4.56 | 3.83-29.8 | 1.46-11.9 | 0.40-6.50 | 2.28-2.99 | 0.06-1.81 | 0.91-3.77 | 0.01-0.26 | 0.20-0.43 | 0.05-1.14 | 0.09-0.61 | |||
对伞花烃 | 0.41-7.66 | 0.33-6.35 | 0.02-8.02 | 0.25-5.21 | 1.10-7.88 | 0-21.1 | 0.01-6.56 | 0.37-11.9 | 0.41-2.88 | 0.02-2.70 | 0.41-6.30 | 0.28-3.96 | |||
柠檬烯 | 0.14-1.25 | 0.02-6.10 | 0.23-4.99 | 0.13-4.11 | 0.63-8.29 | 0.97-16.9 | 0-6.73 | 0.53-10.6 | 0.16-2.86 | 4.41-6.30 | 0.08-0.42 | 1.55-3.72 | |||
γ−萜品烯 | 0.16-1.18 | 0.03-1.09 | 0.10-0.50 | 0.10-0.92 | 0.04-1.54 | 3.11-9.25 | 0.02-4.26 | 1.06-5.02 | 0.25-1.20 | 1.27-3.32 | 0-0.03 | 0.51-1.52 | |||
萜品油烯 | 1.39-1.41 | 0-1.10 | 0.01-0.44 | 0.47-0.98 | 0.22-1.51 | 0.15-0.87 | 0.17-0.36 | 0.18-0.91 | 0.07-0.48 | 0.25-0.40 | 0-0.97 | 0.11-0.62 | |||
单萜烯2) | 4.22-142 | 3.09-91.9 | 4.77-54.5 | 4.36-94.5 | 9.06-184 | 18.4-187 | 3.27-75.2 | 10.3-149 | 3.09-29.7 | 6.67-35.1 | 0.82-10.9 | 3.52-25.8 | |||
苯 | 4.10-79.3 | 1.50-53.8 | 1.39-22.5 | 2.33-51.9 | 1.11-24.2 | 1.07-4.45 | 1.20-13.6 | 1.13-14.1 | 0.18-2.00 | 0-1.89 | 0-7.05 | 0.06-3.65 | |||
甲苯 | 15.1-810 | 57.1-858 | 6.31-80.4 | 26.2-583 | 9.19-28.9 | 0-32.3 | 0.77-59.9 | 3.32-40.4 | 3.85-17.2 | 0-5.13 | 0-3.71 | 1.28-8.70 | |||
乙苯 | 7.54-16.3 | 0-20.5 | 6.12-20.8 | 4.55-19.2 | 0-6.81 | 0-4.81 | 0-7.50 | 0-6.37 | 0.81-2.00 | 0-1.15 | 0-0.33 | 0.27-1.16 | |||
间,对二甲苯 | 13.7-19.9 | 3.50-36.9 | 7.25-24.2 | 8.15-27.0 | 0.54-10.7 | 0-7.47 | 0-10.8 | 0.18-9.67 | 0-0.28 | 0-1.22 | 0-0.40 | 0-0.63 | |||
邻二甲苯 | 8.03-18.1 | 1.95-22.2 | 7.25-35.8 | 5.73-25.4 | 1.36-10.7 | 1.99-5.09 | 0.06-7.88 | 1.14-7.87 | 0.26-1.57 | 0-1.03 | 0-0.33 | 0.09-0.98 | |||
BTEX3) | 48.5- 944 | 64.1- 991 | 28.3- 184 | 46.9- 706 | 12.20- 81.4 | 3.06- 54.1 | 2.03- 99.7 | 5.76- 78.4 | 5.10- 23.09 | 0- 10.42 | 0- 11.8 | 1.70- 15.1 | |||
温度4)/℃ | 30.7-40.8 | 36.4-43.8 | 41.5-50.3 | 36.2-45.0 | 36.0-54.8 | 35.4-49.5 | 25.6-41.8 | 32.3-48.7 | 41.7-51.3 | 32.7-49.3 | 32.2-50.3 | 35.6-50.3 | |||
PAR5) | 293- 2333 | 286- 2261 | 252- 2058 | 277- 2217 | 355- 1943 | 547- 1884 | 303- 1708 | 402- 1774 | 432- 1730 | 513- 2215 | 472- 1973 | 472- 1973 |
Table 1 Emissions of Biogenic volatile organic compounds (BVOCs) from major crops and meteorological conditions in Inner Mongolia Plateau
有效样品数、BVOCs种类及气象条件1) | 农作物种类、采样日期及其BVOCs排放速率/(µg∙g−1∙h−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米Zea mays L. | 马铃薯Solanum tuberosum L. | 水稻Oryza sativa L. | |||||||||||||
20230715 | 20230716 | 20230717 | 平均值 | 20230720 | 20230722 | 20230723 | 平均值 | 20230814 | 20230815 | 20230816 | 平均值 | ||||
有效样品数 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||||||
异戊二烯 | 25.5-763 | 13.2-249 | 8.72-77.7 | 15.8-363 | 6.20-9.19 | 3.48-37.3 | 3.72-31.8 | 4.47-26.1 | 1.94-8.51 | 8.41-10.1 | 0.73-19.6 | 3.69-12.7 | |||
α−蒎烯 | 0.98-64.6 | 0.67-20.1 | 0.02-0.46 | 0.57-28.4 | 1.12-11.1 | 0.36-20.5 | 0.04-9.74 | 0.51-13.8 | 1.05-10.2 | 0.02-3.09 | 0.08-0.18 | 0.38-4.48 | |||
崁烯 | 0.03-63.4 | 0.20-29.6 | 0.25-0.53 | 0.48-31.6 | 2.55-19.4 | 2.67-34.5 | 0.05-9.09 | 1.76-20.9 | 0.17-3.97 | 0.05-5.94 | 0.03-0.71 | 0.08-3.54 | |||
β−蒎烯 | 0.06-0.35 | 0.46-5.25 | 0.24-1.59 | 0.25-2.40 | 0.20-57.9 | 2.70-36.2 | 0.01-11.9 | 0.97-35.4 | 0.51-3.81 | 0.04-5.79 | 0.06-0.50 | 0.20-3.37 | |||
β−月桂烯 | 0.02-0.25 | 0.99-9.00 | 0.01-0.53 | 0.34-3.26 | 2.60-58.4 | 2.79-34.9 | 2.79-11.9 | 2.73-35.1 | 0.41-3.84 | 0.04-5.38 | 0.06-0.50 | 0.17-3.24 | |||
α−水芹烯 | 0.30-0.51 | 0.23-1.14 | 0.03-5.26 | 0.19-2.30 | 0.13-5.89 | 3.00-8.46 | 0.11-3.16 | 1.08-5.84 | 0.02-0.14 | 0.34-0.74 | 0.04-0.05 | 0.13-0.31 | |||
3−蒈烯 | 0.23-0.37 | 0.10-7.68 | 0.03-2.41 | 0.12-3.49 | 0.07-5.26 | 0.36-1.55 | 0.01-9.55 | 0.15-5.45 | 0.03-0.10 | 0.03-0.97 | 0.01-0.11 | 0.02-0.39 | |||
α−萜品烯 | 0.50-1.38 | 0.06-4.56 | 3.83-29.8 | 1.46-11.9 | 0.40-6.50 | 2.28-2.99 | 0.06-1.81 | 0.91-3.77 | 0.01-0.26 | 0.20-0.43 | 0.05-1.14 | 0.09-0.61 | |||
对伞花烃 | 0.41-7.66 | 0.33-6.35 | 0.02-8.02 | 0.25-5.21 | 1.10-7.88 | 0-21.1 | 0.01-6.56 | 0.37-11.9 | 0.41-2.88 | 0.02-2.70 | 0.41-6.30 | 0.28-3.96 | |||
柠檬烯 | 0.14-1.25 | 0.02-6.10 | 0.23-4.99 | 0.13-4.11 | 0.63-8.29 | 0.97-16.9 | 0-6.73 | 0.53-10.6 | 0.16-2.86 | 4.41-6.30 | 0.08-0.42 | 1.55-3.72 | |||
γ−萜品烯 | 0.16-1.18 | 0.03-1.09 | 0.10-0.50 | 0.10-0.92 | 0.04-1.54 | 3.11-9.25 | 0.02-4.26 | 1.06-5.02 | 0.25-1.20 | 1.27-3.32 | 0-0.03 | 0.51-1.52 | |||
萜品油烯 | 1.39-1.41 | 0-1.10 | 0.01-0.44 | 0.47-0.98 | 0.22-1.51 | 0.15-0.87 | 0.17-0.36 | 0.18-0.91 | 0.07-0.48 | 0.25-0.40 | 0-0.97 | 0.11-0.62 | |||
单萜烯2) | 4.22-142 | 3.09-91.9 | 4.77-54.5 | 4.36-94.5 | 9.06-184 | 18.4-187 | 3.27-75.2 | 10.3-149 | 3.09-29.7 | 6.67-35.1 | 0.82-10.9 | 3.52-25.8 | |||
苯 | 4.10-79.3 | 1.50-53.8 | 1.39-22.5 | 2.33-51.9 | 1.11-24.2 | 1.07-4.45 | 1.20-13.6 | 1.13-14.1 | 0.18-2.00 | 0-1.89 | 0-7.05 | 0.06-3.65 | |||
甲苯 | 15.1-810 | 57.1-858 | 6.31-80.4 | 26.2-583 | 9.19-28.9 | 0-32.3 | 0.77-59.9 | 3.32-40.4 | 3.85-17.2 | 0-5.13 | 0-3.71 | 1.28-8.70 | |||
乙苯 | 7.54-16.3 | 0-20.5 | 6.12-20.8 | 4.55-19.2 | 0-6.81 | 0-4.81 | 0-7.50 | 0-6.37 | 0.81-2.00 | 0-1.15 | 0-0.33 | 0.27-1.16 | |||
间,对二甲苯 | 13.7-19.9 | 3.50-36.9 | 7.25-24.2 | 8.15-27.0 | 0.54-10.7 | 0-7.47 | 0-10.8 | 0.18-9.67 | 0-0.28 | 0-1.22 | 0-0.40 | 0-0.63 | |||
邻二甲苯 | 8.03-18.1 | 1.95-22.2 | 7.25-35.8 | 5.73-25.4 | 1.36-10.7 | 1.99-5.09 | 0.06-7.88 | 1.14-7.87 | 0.26-1.57 | 0-1.03 | 0-0.33 | 0.09-0.98 | |||
BTEX3) | 48.5- 944 | 64.1- 991 | 28.3- 184 | 46.9- 706 | 12.20- 81.4 | 3.06- 54.1 | 2.03- 99.7 | 5.76- 78.4 | 5.10- 23.09 | 0- 10.42 | 0- 11.8 | 1.70- 15.1 | |||
温度4)/℃ | 30.7-40.8 | 36.4-43.8 | 41.5-50.3 | 36.2-45.0 | 36.0-54.8 | 35.4-49.5 | 25.6-41.8 | 32.3-48.7 | 41.7-51.3 | 32.7-49.3 | 32.2-50.3 | 35.6-50.3 | |||
PAR5) | 293- 2333 | 286- 2261 | 252- 2058 | 277- 2217 | 355- 1943 | 547- 1884 | 303- 1708 | 402- 1774 | 432- 1730 | 513- 2215 | 472- 1973 | 472- 1973 |
植物 种类 | 排放速率/(µg∙g−1∙h−1) | 采样 地点 | 采样 时间 | 采样 技术 | 文献 来源 | ||
---|---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 苯系物 | |||||
玉米 | 0.0 | 0.4 | ND | 北京 | 1992-2003 | 封闭-GC-FID | 王志辉等, |
0.58 | 0.03 | ND | 比利时 | 2012年5月-10月 | DEC-MS | Bachy et al., | |
0.001-0.002 | 0.003-0.002 | ND | 法国 | 2017年6月 | 动态-PDR-Qi-Tof-MS | Gomez et al., | |
7.10 | 0.25 | ND | 上海 | 2022年6月-8月 | 动态-TD-GC-MS | 肖志华, | |
156 | 9.49 | 125 | 内蒙古 | 2023年7月 | 动态-TD-GC-MS | 本研究 | |
水稻 | 0.7 | 15.8±9.2 | ND | 北京 | 1992-2003 | 封闭-GC-FID | 王志辉等, |
ND | 0.4 | ND | 日本 | 2003年7月-8月 2004年7月-8月 | 动态-TD-GC-MS | (Bao et al., | |
0.78 | 0.93 | ND | 上海 | 2022年9月-12月 | 动态-TD-GC-MS | 肖志华, | |
3.66 | 4.05 | 3.41 | 内蒙古 | 2023年8月 | 动态-TD-GC-MS | 本研究 | |
马铃薯 | 16.9 | 39.6 | 14.1 | 内蒙古 | 2023年8月 | 动态-TD-GC-MS | 本研究 |
Table 2 Comparison of BVOC standard emissions from major crops in Inner Mongolia Plateau
植物 种类 | 排放速率/(µg∙g−1∙h−1) | 采样 地点 | 采样 时间 | 采样 技术 | 文献 来源 | ||
---|---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 苯系物 | |||||
玉米 | 0.0 | 0.4 | ND | 北京 | 1992-2003 | 封闭-GC-FID | 王志辉等, |
0.58 | 0.03 | ND | 比利时 | 2012年5月-10月 | DEC-MS | Bachy et al., | |
0.001-0.002 | 0.003-0.002 | ND | 法国 | 2017年6月 | 动态-PDR-Qi-Tof-MS | Gomez et al., | |
7.10 | 0.25 | ND | 上海 | 2022年6月-8月 | 动态-TD-GC-MS | 肖志华, | |
156 | 9.49 | 125 | 内蒙古 | 2023年7月 | 动态-TD-GC-MS | 本研究 | |
水稻 | 0.7 | 15.8±9.2 | ND | 北京 | 1992-2003 | 封闭-GC-FID | 王志辉等, |
ND | 0.4 | ND | 日本 | 2003年7月-8月 2004年7月-8月 | 动态-TD-GC-MS | (Bao et al., | |
0.78 | 0.93 | ND | 上海 | 2022年9月-12月 | 动态-TD-GC-MS | 肖志华, | |
3.66 | 4.05 | 3.41 | 内蒙古 | 2023年8月 | 动态-TD-GC-MS | 本研究 | |
马铃薯 | 16.9 | 39.6 | 14.1 | 内蒙古 | 2023年8月 | 动态-TD-GC-MS | 本研究 |
[1] | ABIS L, KALALIAN C, LUNARDELLI B, et al., 2021. Measurement report: biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential[J]. Atmospheric Chemistry and Physics, 21(16): 12613-12629. |
[2] | BAI J, BAKER B, LIANG B, et al., 2006. Isoprene and monoterpene emissions from an Inner Mongolia grassland[J]. Atmospheric Environment, 40(30): 5753-5758. |
[3] |
BAO H, AKIRA K, AKIKAZU K, et al., 2008. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan[J]. Environmental Research, 106(2): 156-169.
PMID |
[4] | BACHY A, AUBINET M, SCHOON N, et al., 2016. Are BVOC exchanges in agricultural ecosystems overestimated insights from fluxes measured in a maize field over a whole growingseason[J]. Atmospheric Chemistry and Physics Discussions, 16(8): 5343-5356. |
[5] |
DA SILVA C M, CORRÊA S M, ARBILLA G, 2018. Isoprene emissions and ozone formation in urban conditions: A case study in the city of Rio de Janeiro[J]. Bulletin of Environmental Contamination and Toxicology, 100(1): 184-188.
DOI PMID |
[6] | GUENTHER A B, ZIMMERMAN P R, HARlLEY P C, et al., 1993. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses[J]. Journal of Geophysical Research: Atmospheres, 98(D7): 12609-12617. |
[7] | GUENTHER A, HEWITT C N, ERICKSON D, et al., 1995. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres, 100(D5): 8873-8892. |
[8] | GOMEZ L G, LOUBET B, LAFOUGE F, et al., 2019. Comparative study of biogenic volatile organic compounds fluxes by wheat, maize and rapeseed with dynamic chambers over a short period in northern France[J]. Atmospheric Environment, 214: 116855. |
[9] |
GISELLE P S D, PINHEIRO D O D, SOARES V J B, et al., 2020. Biogenic volatile organic compounds emission of Brazilian Atlantic tree grown under elevated ozone in ambient controlled and field conditions[J]. Bulletin of Environmental Contamination and Toxicology, 105(6): 958-966.
DOI PMID |
[10] | HUANG R X, ZHANG T N, GE X G, et al., 2023. Emission trade-off between isoprene and other BVOC components in pinus massoniana saplings may be regulated by content of chlorophylls, starch and NSCs under drought stress[J]. International Journal of Molecular Sciences, 24(10): 1-19. |
[11] | KÖNIG G, BRUNDA M, PUXBAUM H, et al., 1995. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species[J]. Atmospheric Environment, 29(8): 861-874. |
[12] | MALIK T G, GAJBHIYE T, PANDEY S K, 2018. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of central India[J]. Environmental Monitoring and Assessment, 190(11): 1-11. |
[13] | ZHANG S B, LYU Y Q, YANG X Y, et al., 2022. Modeling biogenic volatile organic compounds emissions and subsequent impacts on ozone air quality in the Sichuan basin, Southwestern China[J]. Frontiers in Ecology and Evolution, 10(1): 1-11. |
[14] |
白建辉, 2021. 亚热带森林BVOCs排放和其影响因子之间的相互关系[J]. 生态环境学报, 30(5): 889-897.
DOI |
BAI J H, 2021. The relationships between BVOC emission fluxes and their influencing factors in a subtropical Pinus forest[J]. Ecology and Environmental Sciences, 30(5): 889-897. | |
[15] | 杜昌笛, 包海, 赵圆圆, 2019. 内蒙古沙漠化草原生物源挥发性有机物排放特征[J]. 中国环境科学, 39(5): 1854-1861. |
DU C D, BAO H, ZHAO Y Y, 2019. The emission of biogenic volatile organic compounds from desert grassland in Inner Mongolia[J]. China Environmental Science, 39(5): 1854-1861. | |
[16] | 高超, 张学磊, 修艾军, 等, 2019. 中国生物源挥发性有机物 (BVOCs) 时空排放特征研究[J]. 环境科学学报, 39(12): 4140-4151. |
GAO C, ZHANG X L, XIU A J, et al., 2019. Spatiotemporal distribution of biogenic volatile organic compounds emissions in China[J]. Acta Scientiae Circumstantiae, 39(12): 4140-4151. | |
[17] |
高星星, 包海, 丁艳旭, 2024. 夏季呼和浩特市生物源挥发性有机物排放速率空间分布[J] 生态环境学报, 33(12): 1902-1913.
DOI |
GAO X X, BAO H, DING Y X, 2024. Spatial distribution of biogenic volatile organic compounds emission rate in Hohhot region during summer[J]. Ecology and Environmental Sciences, 33(12): 1902-1913. | |
[18] | 花圣卓, 陈俊刚, 余新晓, 等, 2016. 温带典型森林树种的萜烯类化合物排放及其与环境要素的相关性[J]. 林业科学, 52(11): 19-28. |
HUA S J, CHEN J G, YU X X, et al., 2016. Correlation between terpenes emission from typical forest tree species and environmental elements in temperate Zone[J]. Scientia Silvae Sinicae, 52(11): 19-28. | |
[19] | 胡书婧, 张汝民, 2022. 挥发性有机化合物在植物适应胁迫及生理生态中的作用[J]. 浙江农林大学学报, 39(6): 1378-1387. |
HU S J, ZHANG R M, 2022. Roles of volatile organic compounds in plant adaptation to stress andphysiological ecology[J]. Journal of Zhejiang A & F University, 39(6): 1378-1387. | |
[20] | 李莹莹, 李想, 陈建民, 2011. 植物释放挥发性有机物 (BVOC) 向二次有机气溶胶 (SOA) 转化机制研究[J]. 环境科学, 32(12): 3588-3592. |
LI Y Y, LI X, CHEN J M, 2011. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition[J]. Environmental Sciences, 32(12): 3588-3592. | |
[21] | 李玲玉, GUENTHEr A B, 顾达萨, 等, 2019. 典型树种挥发性有机物(VOCs) 排放成分谱及排放特征[J]. 中国环境科学, 39(12): 4966-4973. |
LI L Y, GUENTHER A B, GU D S, et al., 2019. Biogenic emission profile of volatile organic compounds from poplar, sweetgum, and pine trees[J]. China Environmental Sciences, 39(12): 4966-4973. | |
[22] | 李玲玉, ALEX B. GUENTHER, 顾达萨, 等, 2020. 短期干旱胁迫对马尾松排放挥发性有机物的影响[J]. 中国环境科学, 40(9): 3776-3780. |
LI L Y, GUENTHER A B, GU D S, et al., 2020. Impact of short-term drought stress on volatile organic compounds emissions from Pinus massoniana[J]. China Environmental Sciences, 40(9): 3776-3780. | |
[23] | 李达毅, 2021. 草原生态系统生物源挥发性有机物排放通量的环境影响因素研究[D]. 呼和浩特: 内蒙古师范大学. |
LI D Y, 2021. Study on environmental influence factors of biogenic volatile organic compounds in grassland ecosystem[D]. Hohhot: Inner Mongolia Normal University. | |
[24] |
李少宁, 陶雪莹, 李绣宏, 等, 2022. 植物释放有益挥发性有机物研究进展[J]. 生态环境学报, 31(1): 187-195.
DOI |
LI S N, TAO X Y, LI X H, et al., 2022. Research progress of beneficial biogenic volatile organic compounds released from plants[J]. Ecology and Environment Sciences, 31(1): 187-195.
DOI |
|
[25] | 刘云凤, 龚道程, 林尤静, 等, 2022. 南岭箭竹生物源挥发性有机物排放特征[J]. 中国环境科学, 42(2): 568-574. |
LIU Y F, GONG D C, LIN Y J, et al., 2022. Emissions of biogenic volatile organic compounds (BVOCs) from Fargesia nanlingensi in Nanling Mountains, southern China[J]. China Environmental Sciences, 42(2): 568-574. | |
[26] | 刘智远, 包海, 杨娜, 等, 2022. 内蒙古河套灌区春小麦挥发性有机物排放特征[J]. 中国环境科学, 42(9): 4026-4032. |
LIU Z Y, BAO H, YANG N, et al., 2022. Emissions of volatile organic compounds from spring wheat in Hetao irrigation district of Inner Mongolia[J]. China Environmental Sciences, 42(9): 4026-4032. | |
[27] | 龙启超, 乔玉红, 姜涛, 等, 2023. 高温天气对生物源排放及其O3生成贡献的影响: 以四川盆地2022年7-8月为例[J]. 环境科学研究, 36(12): 2331-2343. |
LONG Q C, QIAO Y H, JIANG T, et al., 2023. Effects of high temperature on biogenic emissions and O3 generation: A case study of sichuan basin from July to August[J]. Research of Environmental Sciences, 36(12): 2331-2343. | |
[28] | 李晨, 张芝娟, 陈曦, 等, 2024. 基于WRF-CMAQ的晋城市PM2.5与O3复合污染协同控制[J]. 中国环境科学, 44(12): 6569-6577. |
LI C, ZHANG Z J, CHEN X, et al., 2024. Coordinated control of PM2.5 and O3 compound pollution in Jincheng city based on the WRF-CMAQ model[J]. China Environmental Sciences, 44(12): 6569-6577. | |
[29] |
欧阳嗣航, 刘叶凡, 韩阳媚, 等, 2023. 植物挥发物释放特征及其影响因素研究进展[J]. 林业与生态科学, 38(3): 375-384.
DOI |
OUYANG S H, LIU Y F, HAN Y M, et al., 2023. Research progress on the release characteristics of biogenic volatile organic compounds and its influencing factors[J]. Forestry and Ecological Sciences, 38(3): 375-384.
DOI |
|
[30] | 王志辉, 张树宇, 陆思华, 等, 2003. 北京地区植物VOCs排放速率的测定[J]. 环境科学, 24(2): 7-12. |
WANG Z H, ZHANG S Y, LU S H, et al., 2003. Screenings of plant species in Beijing for volatile organic compound emissions[J]. Environmental Sciences, 24(2): 7-12. | |
[31] | 王新雨, 张宜升, 刘子杨, 等, 2020. 植被源异戊二烯排放影响的研究进展[J]. 青岛理工大学学报, 41(4): 55-63. |
WANG X Y, ZHANG Y S, LIU Z Y, et al., 2020. A review of effects of global warming on biogenic isoprene emission[J]. Journal of Qingdao University of Technology, 41(4): 55-63. | |
[32] |
王剑, 包海, 李达毅, 等, 2021. 干旱半干旱区夏季绿化树种挥发性有机物标准排放量的测定[J]. 生态环境学报, 30(6): 1168-1176.
DOI |
WANG J, BAO H, LI D Y, et al., 2021. Emissions of volatile organic compounds from landscape trees in arid and semi-arid region during summer[J]. Ecology and Environment Sciences, 30(6): 1168-1176.
DOI |
|
[33] |
武开阔, 张哲, 武志杰, 等, 2022. 不同秸秆还田量和氮肥配施对玉米田土壤CO2排放的影响[J]. 应用生态学报, 33(3): 664-670.
DOI |
WU K K, ZHANG Z, WU Z J, et al., 2022. Effects of different amounts of straw return and nitrogen fertilizer application on soil CO2 emission from maize fields[J]. Journal of Applied Ecology, 33(3): 664-670. | |
[34] | 王楚迪, 节龙飞, 李苗苗, 等, 2022. 我国夏季不同类型植被BVOCs排放观测与模拟研究[J]. 环境科学研究, 35(6): 1341-1350. |
WANG C D, JIE L F, LI M M, et al., 2022. Observation and simulation of BVOCs emission from different vegetation types in summer in China[J]. Research of Environmental Sciences, 35(6): 1341-1350. | |
[35] |
温丽容, 江明, 黄渤, 等, 2023. 珠三角典型区域臭氧成因分析与 VOCs 来源解析——以中山为例[J]. 生态环境学报, 32(3): 500-513.
DOI |
WEN L R, JIANG M, HUANG B, et al., 2023. Analysis of ozone pollution causes and source analysis of VOCs in typical areas of Pearl River Delta: A case study of Zhongshan city[J]. Ecology and Environmental Sciences, 32(3): 500-513. | |
[36] | 谢军飞, 李延明, 2013. 植物源挥发性有机化合物排放清单的研究进展[J]. 环境科学, 34(12): 4779-4786. |
XIE J F, LI Y M, 2013. Research advances on volatile organic compounds emission inventory of plants[J]. Environmental Science, 34(12): 4779-4786. | |
[37] | 许燕, 李双江, 袁相洋, 等, 2020. 北方常见绿化树种BVOCs排放特征及其与光合作用参数的相关性[J]. 环境科学, 41(8): 3518-3526. |
XU Y, LI S J, YUAN X Y, et al., 2020. Emission characteristics of biogenic volatile compounds (BVOCs) from common greening tree species in northern China and their correlations withphotosynthetic parameters[J]. Environmental Sciences, 41(8): 3518-3526. | |
[38] | 肖志华, 2023. 上海市主要农业及天然源植被BVOCs排放特征研究[D]. 上海: 华东理工大学. |
XIAO Z H, 2023. Study on emission characteristics of BVOCs from major agricultural and natural source vegetation in Shanghai[D]. Shanghai: East China University of Science and Technology. | |
[39] | 虞小芳, 程鹏, 古颖纲, 2018. 广州市夏季VOCs对臭氧及SOA生成潜势的研究[J]. 中国环境科学, 38(3): 830-837. |
YU X F, CHENG P, GU Y G, 2018. Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou[J]. China Environmental Sciences, 38(3): 830-837. | |
[40] | 袁相洋, 许燕, 杜英东, 2022. 南京和北京城市天然源挥发性有机物排放差异[J]. 中国环境科学, 42(4): 1489-1500. |
YUAN X Y, XU Y, DU Y D, 2022. Differences of biogenic volatile organic compound emissions from urban forests in Nanjing and Beijing[J]. China Environmental Sciences, 42(4): 1489-1500. | |
[41] | 赵圆圆, 包海, 李达毅, 等, 2020. 锡林郭勒草原不同植物生物源挥发性有机物排放通量[J]. 内蒙古师范大学学报(自然科学汉文版), 49(3): 236-244. |
ZHAO Y Y, BAO H, LI D Y, et al., 2020. Biogenic volatile organic compounds emission fluxes from the different plantsin Xilingol Grassland[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 49(3): 236-244. | |
[42] | 张明明, 邵旻, 陈培林, 等, 2023. 长三角地区VOCs排放特征及其对大气O3和SOA的潜在影响[J]. 中国环境科学, 43(6): 2694-2702. |
ZHANG M M, SHAO M, CHEN P L, et al., 2023. Comparative study of anthropogenic and biogenic VOCs emission characteristics and their impact on O3 and SOA formation potential in the Yangtze River Delta region[J]. China Environmental Sciences, 43(6): 2694-2702. | |
[43] | 赵路佳, 李春林, 胡远满, 等, 2023. 城市植物源挥发性有机化合物排放特征及其大气环境效应研究进展[J]. 生态学报, 43(24): 10023-10031. |
ZHAO L J, LI C L, HU Y M, et al., 2023. Research progress on the emission characteristics of volatile organic compounds from urban plants and their atmospheric effects[J]. Acta Ecologica Sinica, 43(24): 10023-10031. |
[1] | ZHANG Qiang, LI Lingjun, LU Haifeng, LIU Baoxian, LI Qi, WANG Hanlin. Emission Characteristics of Biogenic Volatile Organic Compounds and the Formation Potentials of Secondary Pollutants from Nine Dominant Greening Trees in Beijing [J]. Ecology and Environmental Sciences, 2025, 34(9): 1432-1441. |
[2] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environmental Sciences, 2023, 32(8): 1507-1515. |
[3] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environmental Sciences, 2023, 32(3): 627-634. |
[4] | XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing [J]. Ecology and Environmental Sciences, 2023, 32(2): 245-255. |
[5] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environmental Sciences, 2022, 31(6): 1141-1150. |
[6] | CHEN Bishan, ZHENG Kanghui, WANG Jing, YE Linhai, SONG Junxia. Content Characteristics and Health Risk Analysis of Mercury in Soil-crop System in Leizhou Peninsula [J]. Ecology and Environmental Sciences, 2022, 31(3): 572-582. |
[7] | CHEN Fuqiuxue, TANG Siqi, YUAN Hao, MA Zixuan, CHEN Tan, YANG Ting, ZHANG Bing, LIU Ying. Impacts of Polystyrene Microplastics on Seed Germination and Seedling Growth of Typical Crops [J]. Ecology and Environmental Sciences, 2022, 31(12): 2382-2392. |
[8] | WANG Jian, BAO Hai, LI Dayi, LIU Zhiyuan, YANG Na. Emissions of Volatile Organic Compounds from Landscape Trees in Arid and Semi-Arid Region During Summer [J]. Ecology and Environmental Sciences, 2021, 30(6): 1168-1176. |
[9] | BAI Jianhui. The Relationships between BVOC Emission Fluxes and Their Influencing Factors in A Subtropical Pinus Forest [J]. Ecology and Environmental Sciences, 2021, 30(5): 889-897. |
[10] | WANG Biling, CHEN Bishan, LIU Fayao, SU Weiwei, KE Liucong, HUANG Xinxin. Potential Risk Assessment and Enrichment Characteristics of Heavy Metals in Soil Fruit Crop System of Leizhou Peninsula [J]. Ecology and Environmental Sciences, 2021, 30(5): 1076-1083. |
[11] | WANG Jing, FANG Feng, WANG Ying. Temporal Variation Characteristics and Influencing Factors of Sown Area Variation of Grain Crops in Southwest and South China [J]. Ecology and Environmental Sciences, 2021, 30(10): 2010-2025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn