Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1432-1441.DOI: 10.16258/j.cnki.1674-5906.2025.09.010
• Research Article [Environmental Science] • Previous Articles Next Articles
ZHANG Qiang1,2(), LI Lingjun1,2,*(
), LU Haifeng3, LIU Baoxian4, LI Qi1,2, WANG Hanlin1,2
Received:
2025-02-25
Online:
2025-09-18
Published:
2025-09-05
张蔷1,2(), 李令军1,2,*(
), 鹿海峰3, 刘保献4, 李琪1,2, 王涵霖1,2
通讯作者:
*E-mail: lilj2000@126.com
作者简介:
张蔷(1992年生),女,高级工程师,博士,主要从事生态遥感、植物化学计量等方面的研究。E-mail: zhangqiang_lc@163.com
基金资助:
CLC Number:
ZHANG Qiang, LI Lingjun, LU Haifeng, LIU Baoxian, LI Qi, WANG Hanlin. Emission Characteristics of Biogenic Volatile Organic Compounds and the Formation Potentials of Secondary Pollutants from Nine Dominant Greening Trees in Beijing[J]. Ecology and Environmental Sciences, 2025, 34(9): 1432-1441.
张蔷, 李令军, 鹿海峰, 刘保献, 李琪, 王涵霖. 北京地区9种典型绿化树种的BVOCs释放及二次污染生成潜势[J]. 生态环境学报, 2025, 34(9): 1432-1441.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.010
树种 | 拉丁名 | 树种类型 | 调查时间 | 样品数量 | 调查位置 |
---|---|---|---|---|---|
油松 | Pinus tabuliformis | 常绿针叶树种 | 2022年7月 | 3 | 奥林匹克森林公园 |
侧柏 | Platycladus orientalis | 常绿针叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
白蜡 | Fraxinus chinensis | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
垂柳 | Salix matsudana | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
国槐 | Sophora japonica | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
毛白杨 | Populus tomentosa | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
蒙古栎 | Quercus mongolica | 落叶阔叶树种 | 2022年7月 | 3 | 鹫峰国家森林公园 |
一球悬铃木 | Platanus occidentalis | 落叶阔叶树种 | 2022年8月 | 3 | 鹫峰国家森林公园 |
银杏 | Ginkgo biloba | 落叶阔叶树种 | 2022年8月 | 3 | 鹫峰国家森林公园 |
Table 1 Sampling dates and sites
树种 | 拉丁名 | 树种类型 | 调查时间 | 样品数量 | 调查位置 |
---|---|---|---|---|---|
油松 | Pinus tabuliformis | 常绿针叶树种 | 2022年7月 | 3 | 奥林匹克森林公园 |
侧柏 | Platycladus orientalis | 常绿针叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
白蜡 | Fraxinus chinensis | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
垂柳 | Salix matsudana | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
国槐 | Sophora japonica | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
毛白杨 | Populus tomentosa | 落叶阔叶树种 | 2022年8月 | 3 | 奥林匹克森林公园 |
蒙古栎 | Quercus mongolica | 落叶阔叶树种 | 2022年7月 | 3 | 鹫峰国家森林公园 |
一球悬铃木 | Platanus occidentalis | 落叶阔叶树种 | 2022年8月 | 3 | 鹫峰国家森林公园 |
银杏 | Ginkgo biloba | 落叶阔叶树种 | 2022年8月 | 3 | 鹫峰国家森林公园 |
树种 | 排放速率(以C计)/(µg·g−1·h−1) | |||||||
---|---|---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 倍半萜烯 | 含氧VOCs | 芳香烃 | 烷烃 | 其他VOCs | 总计 | |
油松 | - | 11.2 | 0.656 | 2.42 | - | 0.074 | 0.012 | 14.4 |
侧柏 | - | 1.59 | 0.136 | 0.570 | 0.183 | 0.403 | 0.474 | 3.36 |
白蜡 | - | 0.096 | 0.007 | 0.679 | - | 0.370 | 0.194 | 1.35 |
垂柳 | 8.58 | 0.546 | 0.228 | 7.02 | 1.56 | 2.43 | 1.86 | 22.2 |
国槐 | 2.65 | 0.235 | 0.038 | 2.97 | 0.017 | 0.446 | 0.581 | 6.94 |
毛白杨 | 14.5 | 2.58 | 0.834 | 1.90 | 1.43 | 0.326 | 0.940 | 22.5 |
蒙古栎 | 2.84 | 0.872 | 2.08 | 5.79 | - | 2.51 | 1.78 | 15.9 |
一球悬铃木 | 7.58 | 0.175 | - | 17.7 | - | 0.484 | 0.315 | 26.3 |
银杏 | - | - | - | 0.713 | 0.005 | 0.686 | 0.323 | 1.73 |
Table 2 Emission rates of BVOCs from dominant tree species in Beijing
树种 | 排放速率(以C计)/(µg·g−1·h−1) | |||||||
---|---|---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 倍半萜烯 | 含氧VOCs | 芳香烃 | 烷烃 | 其他VOCs | 总计 | |
油松 | - | 11.2 | 0.656 | 2.42 | - | 0.074 | 0.012 | 14.4 |
侧柏 | - | 1.59 | 0.136 | 0.570 | 0.183 | 0.403 | 0.474 | 3.36 |
白蜡 | - | 0.096 | 0.007 | 0.679 | - | 0.370 | 0.194 | 1.35 |
垂柳 | 8.58 | 0.546 | 0.228 | 7.02 | 1.56 | 2.43 | 1.86 | 22.2 |
国槐 | 2.65 | 0.235 | 0.038 | 2.97 | 0.017 | 0.446 | 0.581 | 6.94 |
毛白杨 | 14.5 | 2.58 | 0.834 | 1.90 | 1.43 | 0.326 | 0.940 | 22.5 |
蒙古栎 | 2.84 | 0.872 | 2.08 | 5.79 | - | 2.51 | 1.78 | 15.9 |
一球悬铃木 | 7.58 | 0.175 | - | 17.7 | - | 0.484 | 0.315 | 26.3 |
银杏 | - | - | - | 0.713 | 0.005 | 0.686 | 0.323 | 1.73 |
树种 | 排放速率(以C计)/(µg·g−1·h−1) | 采样 地点 | 参考文献 | |||
---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 其他VOCs | 总排 放量 | |||
油松 | 1.16 | 5.84 | - | - | 河北 | 樊冲, |
0.02 | 3.55 | 0.61 | 4.18 | 西安 | 桂丽, | |
0.4 | 19.0 | - | - | 北京 | 王志辉等, | |
0.15 | 5.71 | - | - | 北京 | Klinger et al., | |
0.985 | 3.83 | 0.393 | 5.21 | 北京 | 井潇溪, | |
- | 11.2 | 3.16 | 14.4 | 北京 | 本研究 | |
侧柏 | 0.046 | 4.39 | - | - | 河北 | 樊冲, |
<0.1 | 2.2 | - | - | 北京 | 王志辉等, | |
0.03 | 0.63 | - | - | 北京 | Klinger et al., | |
1.60 | 27.2 | 0.572 | 29.4 | 北京 | 井潇溪, | |
- | 1.59 | 1.77 | 3.36 | 北京 | 本研究 | |
毛白杨 | 4.81 | 0.391 | - | - | 河北 | 樊冲, |
43.4 | 0.02 | 0.06 | 43.5 | 西安 | 桂丽, | |
106 | 0.2 | - | - | 北京 | 王志辉等, | |
3.11 | 4.87 | 0.526 | 8.51 | 北京 | 井潇溪, | |
23.3 | - | - | - | 北京 | 牟玉静等, | |
14.5 | 2.58 | 5.42 | 22.5 | 北京 | 本研究 | |
国槐 | 10.1 | 0.008 | - | - | 河北 | 樊冲, |
40.2 | 1.39 | 0.53 | 42.1 | 西安 | 桂丽, | |
52.5 | 1.9 | - | - | 北京 | 王志辉等, | |
3.76 | 0.027 | 0.179 | 3.97 | 北京 | 井潇溪, | |
2.65 | 0.235 | 4.06 | 6.94 | 北京 | 本研究 | |
垂柳 | 22.1 | - | - | - | 河北 | 樊冲, |
6.75 | - | 0.196 | 6.95 | 北京 | 井潇溪, | |
70.2 | 3.7 | - | - | 北京 | 王志辉等, | |
18.5 | - | - | - | 北京 | 牟玉静等, | |
15.6 | 0.47 | - | - | 沈阳 | 陈颖等, | |
8.58 | 0.546 | 13.1 | 22.2 | 北京 | 本研究 | |
银杏 | <0.01 | 0.2 | - | - | 北京 | 王志辉等, |
1.01 | 2.41 | 0.71 | 4.13 | 西安 | 桂丽, | |
1.52 | 1.73 | - | - | 沈阳 | 陈颖等, | |
- | - | 1.73 | 1.73 | 北京 | 本研究 | |
悬铃木 | 21.4 | 4.38 | 22.9 | 48.7 | 北京 | 井潇溪, |
7.58 | 0.175 | 18.5 | 26.3 | 北京 | 本研究 | |
蒙古栎 | 17.0 | - | - | - | 河北 | 樊冲, |
32.1 | 7.8 | - | - | 北京 | 王志辉等, | |
98.9 | 0.1 | - | - | 北京 | Klinger et al., | |
2.46 | 0.120 | 0.423 | 3.00 | 北京 | 井潇溪, | |
211 | 5.82 | - | - | 沈阳 | 李德文等, | |
2.84 | 0.872 | 12.2 | 15.9 | 北京 | 本研究 |
Table 3 Comparison of the BVOCs emission rates in this work with previous studies
树种 | 排放速率(以C计)/(µg·g−1·h−1) | 采样 地点 | 参考文献 | |||
---|---|---|---|---|---|---|
异戊二烯 | 单萜烯 | 其他VOCs | 总排 放量 | |||
油松 | 1.16 | 5.84 | - | - | 河北 | 樊冲, |
0.02 | 3.55 | 0.61 | 4.18 | 西安 | 桂丽, | |
0.4 | 19.0 | - | - | 北京 | 王志辉等, | |
0.15 | 5.71 | - | - | 北京 | Klinger et al., | |
0.985 | 3.83 | 0.393 | 5.21 | 北京 | 井潇溪, | |
- | 11.2 | 3.16 | 14.4 | 北京 | 本研究 | |
侧柏 | 0.046 | 4.39 | - | - | 河北 | 樊冲, |
<0.1 | 2.2 | - | - | 北京 | 王志辉等, | |
0.03 | 0.63 | - | - | 北京 | Klinger et al., | |
1.60 | 27.2 | 0.572 | 29.4 | 北京 | 井潇溪, | |
- | 1.59 | 1.77 | 3.36 | 北京 | 本研究 | |
毛白杨 | 4.81 | 0.391 | - | - | 河北 | 樊冲, |
43.4 | 0.02 | 0.06 | 43.5 | 西安 | 桂丽, | |
106 | 0.2 | - | - | 北京 | 王志辉等, | |
3.11 | 4.87 | 0.526 | 8.51 | 北京 | 井潇溪, | |
23.3 | - | - | - | 北京 | 牟玉静等, | |
14.5 | 2.58 | 5.42 | 22.5 | 北京 | 本研究 | |
国槐 | 10.1 | 0.008 | - | - | 河北 | 樊冲, |
40.2 | 1.39 | 0.53 | 42.1 | 西安 | 桂丽, | |
52.5 | 1.9 | - | - | 北京 | 王志辉等, | |
3.76 | 0.027 | 0.179 | 3.97 | 北京 | 井潇溪, | |
2.65 | 0.235 | 4.06 | 6.94 | 北京 | 本研究 | |
垂柳 | 22.1 | - | - | - | 河北 | 樊冲, |
6.75 | - | 0.196 | 6.95 | 北京 | 井潇溪, | |
70.2 | 3.7 | - | - | 北京 | 王志辉等, | |
18.5 | - | - | - | 北京 | 牟玉静等, | |
15.6 | 0.47 | - | - | 沈阳 | 陈颖等, | |
8.58 | 0.546 | 13.1 | 22.2 | 北京 | 本研究 | |
银杏 | <0.01 | 0.2 | - | - | 北京 | 王志辉等, |
1.01 | 2.41 | 0.71 | 4.13 | 西安 | 桂丽, | |
1.52 | 1.73 | - | - | 沈阳 | 陈颖等, | |
- | - | 1.73 | 1.73 | 北京 | 本研究 | |
悬铃木 | 21.4 | 4.38 | 22.9 | 48.7 | 北京 | 井潇溪, |
7.58 | 0.175 | 18.5 | 26.3 | 北京 | 本研究 | |
蒙古栎 | 17.0 | - | - | - | 河北 | 樊冲, |
32.1 | 7.8 | - | - | 北京 | 王志辉等, | |
98.9 | 0.1 | - | - | 北京 | Klinger et al., | |
2.46 | 0.120 | 0.423 | 3.00 | 北京 | 井潇溪, | |
211 | 5.82 | - | - | 沈阳 | 李德文等, | |
2.84 | 0.872 | 12.2 | 15.9 | 北京 | 本研究 |
[1] | ANTONIO M, FEDERICO B, DANIELA F, et al., 2021. Cross-correlations of biogenic volatile organic compounds (BVOCs) emissions typify different phenological stages and stressful events in a Mediterranean Sorghum plantation[J]. Agricultural and Forest Meteorology, 303: 108380. |
[2] | BENJAMIN M, WINER A, 1998. Estimating the ozone-forming potentialof urban trees and shrubs[J]. Atmosphere Environment, 32(1): 53-68. |
[3] | CARTER W P L, 2009. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[R]. California Air Resources Board Contract, 2009: 339. |
[4] | DANIEL G, 1992. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality[J]. Atmospheric Environment, Part A, General Topics, 26(6): 953-963. |
[5] | FAIOLA C L, WEN M, VANREKEN T M, 2015. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: Inter- and intra-species variability for six coniferous species[J]. Atmospheric Chemistry and Physics, 15(7): 3629-3646. |
[6] | FANG C F, LING D L, 2003. Investigation of the noise reduction provided by tree belts[J]. Landscape and Urban Planning, 63(4): 187-195. |
[7] | GHIRARDO A, XIE J F, ZHENG X H, et al., 2016. Urban stressinduced biogenic VOC emissions and SOA-forming potentials in Beijing[J]. Atmospheric Chemistry and Physics, 16(5): 2901-2920. |
[8] | GÓMEZ M C, DURANA N, GARCÍA J A, et al., 2020. Long-term measurement of biogenic volatile organic compounds in a rural background area: Contribution to ozone formation[J]. Atmospheric environment, 224: 117315. |
[9] | GROSJEAN D, 1992. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality[J]. Atmospheric Environment, Part A, General Topics, 26(6): 953-963. |
[10] | GUENTHER A B, ZIMMERMAN P R, HARLEY P C, et al., 1993. Isoprene and monoterpene emission rate variability model evaluations and sensitivity analyses[J]. Journal of Geophysical Research-Atmospheres, 98(D7): 12607-12609. |
[11] | GUENTHER A, HEWITT C, ERICKSON D, et al., 1995. A global-model of natural volatile organic-compound emission[J]. Journal of Geophysical Research Atmospheres, 100(5): 8873-8892. |
[12] | GUENTHER A, JIANG X, HEALD C L, et al., 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development Discussions, 5(6): 1471-1492. |
[13] | GUENTHER A, KARL T, HARLEY P, et al., 2006. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 6(11): 3181-3210. |
[14] | HUANG H C, YANG H L, CHEN Y L, et al., 2021. Urban green space optimization based on a climate health risk appraisal: A case study of Beijing city, China[J]. Urban Forestry & Urban Greening, 62(1): 127-154. |
[15] | HUANG J B, HARTMANN H, HELLÉN H, et al., 2018. New perspectives on CO2, temperature, and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring-down spectroscopy[J]. Environmental Science and Technology, 52(23): 13811-13823. |
[16] | JING X X, LUN X X, FAN C, et al., 2020. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China[J]. Journal of Environmental Sciences, 95(9): 73-81. |
[17] | JO H K, 2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea[J]. Journal of Environmental Manage, 64(2): 115-126. |
[18] | KLINGER L F, LI Q J, GUENTHER A B, et al., 2002. Assessment of volatile organic compound emissions from ecosystems of China[J]. Journal of Geophysical Research, 107(D21): 1-21. |
[19] | LELIEVELD J, BUTLER T M, CROWLEY J N, et al., 2008. Atmospheric oxidation capacity sustained by a tropical forest[J]. Nature, 452(7188): 737-740. |
[20] | LI L L, TAN Q W, ZHANG Y H, et al., 2017. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China[J]. Environmental Pollution, 230: 718-729. |
[21] | LI L Y, GUENTHER A B, XIE S D, et al., 2019. Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements[J]. Atmospheric Environment, 212: 1-5. |
[22] | LI L Y, ZHANG B W, CAO J, et al., 2021. Isoprenoid emissions from natural vegetation increased rapidly in eastern China[J]. Environmental Research, 200(12): 111462. |
[23] |
LIU L P, SEYLER B C, LIU H F, et al., 2022. Biogenic volatile organic compound emission patterns and secondary pollutant formation potentials of dominant greening trees in Chengdu, southwest China[J]. Journal of Environmental Sciences, 114: 179-193.
DOI PMID |
[24] |
LUN X X, LIN Y, CHAI F H, et al., 2020. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia[J]. Journal of Environmental Sciences, 95: 266-277.
DOI PMID |
[25] | MORRISON E C, DREWER J, HEAL M R, 2016. A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops short-rotation coppice willow and miscanthus and the annual arable crops wheat and oilseed rape[J]. GCB Bioenergy, 8(1): 211-225. |
[26] | NIINEMETS Ü, KUHN U, HARLEY P C, et al., 2011. Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols[J]. Biogeosciences, 8(8): 2209-2246. |
[27] |
REN Y Q, WANG G H, LI J J, et al., 2018. Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China[J]. Journal of Environmental Sciences, 71: 32-44.
DOI PMID |
[28] |
REN Y, QU Z L, DU Y Y, et al., 2017. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies[J]. Environmental Pollution, 230: 849-861.
DOI PMID |
[29] | SUN L, XUE L K, WANG T, et al., 2016. Significant increase of summertime ozone at Mount Tai in Central Eastern China[J]. Atmospheric Chemistry and Physics, 16(16): 10637-10650. |
[30] | WANG Z H, BAI Y H, ZHANG S Y, 2003. A biogenic volatile organic compounds emission inventory for Beijing[J]. Atmospheric Environment, 37(27): 3771-3782. |
[31] | WU J, LONG J Y, LIU H X, et al., 2021. Biogenic volatile organic compounds from 14 landscape woody species: Tree species selection in the construction of urban greenspace with forest healthcare effects[J]. Journal of Environmental Management, 300: 113761. |
[32] | WU J, ZHANG Q, WANG L X, et al., 2024. Seasonal biogenic volatile organic compound emission factors in temperate tree species: implications for emission estimation and ozone formation[J]. Environmental Pollution, 361: 124895. |
[33] | WU K, YANG X Y, CHEN D, et al., 2020. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China[J]. Atmospheric Research, 231: 104656. |
[34] | YANG J, HUANG C H, ZHANG Z Y, et al., 2014. The temporal trend of urban green coverage in major Chinese cities between 1990 and 2010[J]. Urban Forestry & Urban Greening, 13(1): 19-27. |
[35] | YATAGAI M, HONG Y, 2011. Chemical composition of the essential oil of Pinus massoniana Lamb[J]. Taylor & Francis Group, 9(4): 485-487. |
[36] | 柴一新, 祝宁, 韩焕金, 2002. 城市绿化树种的滞尘效应——以哈尔滨市为例[J]. 应用生态学报, 13(9): 1121-1126. |
CHAI Y X, ZHU N, HAN H J, 2002. Dust removal effect of urban tree species in Harbin[J]. Chinese Journal of Applied Ecology, 13(9): 1121-1126. | |
[37] | 陈俊刚, 2017. 森林植物排放挥发性有机物及对二次污染物生成的影响[D]. 北京: 北京林业大学. |
CHEN J G, 2017. Volatile organic compounds emitted from forest plants and its effects on the formation of secondary pollutants[D]. Beijing: Beijing Forestry University. | |
[38] | 陈颖, 李德文, 史奕, 等, 2009. 沈阳地区典型绿化树种生物源挥发性有机物的排放速率[J]. 东北林业大学学报, 37(3): 49-51. |
CHEN Y, LI D W, SHI Y, et al., 2009. Emission rate of biogenic volatile organic compounds from urban trees in Shenyang, China[J]. Journal of Northeast Forestry University, 37(3): 49-51. | |
[39] | 樊冲, 2019. 河北省森林植物源挥发性有机物排放量研究[D]. 北京: 北京林业大学. |
FAN C, 2019. Study on biogenic volatile organic compounds emission from forest plants in Hebei province[D]. Beijing: Beijing Forestry University. | |
[40] | 桂丽, 2019. 西安市挥发性有机物排放量估算及其臭氧生成潜势研究[D]. 西安: 西北大学. |
GUI L, 2019. Estimation of volatile organic organic compounds emissions and ozone formation potential in Xi’an city[D]. Xi’an: Northwest University. | |
[41] | 井潇溪, 2020. 北京市森林植物挥发性有机物排放研究[D]. 北京: 北京林业大学. |
JING X X, 2020. Study on biogenic volatile organic compounds emission from forest plants in Beijing[D]. Beijing: Beijing Forestry University. | |
[42] | 李德文, 迟光宇, 张兆伟, 等, 2009. 沈阳市城区幼树挥发性有机物组成及排放速率[J]. 辽宁工程技术大学学报(自然科学版), 28(2): 300-303. |
LI D W, CHI G Y, ZHANG Z W, et al., 2009. Composition of biogenic volatile organic compounds and emission from four young tree species in Shenyang[J]. Journal of Liaoning Technical University (Natural Science Edition), 28(2): 300-303. | |
[43] |
李少宁, 李婷婷, 陶雪莹, 等, 2023. 4种落叶树种释放有益挥发性有机物的比较研究[J]. 生态环境学报, 32(1): 123-128.
DOI |
LI S N, LI T T, TAO X Y, et al., 2023. Comparative study on the release of beneficial volatile organic compounds from four deciduous tree species[J]. Ecology and Environmental Sciences, 32(1): 123-128. | |
[44] |
李少宁, 陶雪莹, 李慧敏, 等, 2022. 侧柏和垂柳释放有益BVOCs组分生长季动态变化特征研究[J]. 生态环境学报, 31(2): 257-264.
DOI |
LI S N, TAO X Y, LI H M, et al., 2022. Study on dynamic characteristics of BVOCs released from Platycladus orientalis and Salix babylonica in growing season[J]. Ecology and Environmental Sciences, 31(2): 257-264. | |
[45] | 吕铃钥, 李洪远, 杨佳楠, 2015. 中国植物挥发性有机化合物排放估算研究进展[J]. 环境污染与防治, 37(11): 83-89. |
LÜ L Y, LI H Y, YANG J N, 2015. Research process of the emission estimate of biogenic volatile organic compounds in China[J]. Environmental Pollution and Control, 37(11): 83-89. | |
[46] | 牟玉静, 宋文质, 张晓山, 等, 1999. 落叶阔叶树异戊二烯排放研究[J]. 环境化学, 18(1): 21-27. |
MU Y J, SONG W Z, ZHANG X S, et al., 1999. Study on emissions of isoprene from deciduous and broadleaf trees[J]. Environmental Chemistry, 18(1): 21-27. | |
[47] | 滕青林, 2017. 5种乔木VOCs分析及SOA生成潜势估算的研究[D]. 杨凌: 西北农林科技大学. |
TENG Q L, 2017. Analysis on VOCs of five species of trees and estimation of formation of potential of SOA[D]. Yangling: Northwest A & F University. | |
[48] | 王君怡, 2020. 北京地区8种典型景观树种释放挥发性有机物 (BVOCs) 动态变化特征研究[D]. 沈阳: 沈阳农业大学. |
WANG J Y, 2020. Study on the characteristics of release BVOCs of eight typical landscape tree species in Beijing[D]. Shenyang: Shenyang Agricultural University. | |
[49] | 王志辉, 张树宇, 陆思华, 等, 2003. 北京地区植物VOCs排放速率的测定[J]. 环境科学, 24(2): 7-12. |
WANG Z H, ZHANG S Y, LU S H, et al., 2003. Screenings of 23 plant species in Beijing for volatile organic compound emissions[J]. Environmental Science, 24(2): 7-12. | |
[50] | 张莉, 2002. 中国森林生态系统异戊二烯排放研究[D]. 南京: 南京气象学院. |
ZHANG L, 2002. Isoprene emission from forest ecosystem in China[D]. Nanjing: Nanjing Institute of Meteorology. | |
[51] | 张蔷, 李令军, 赵文慧, 等, 2021. 北京森林BVOCs排放特征及对区域空气质量的影响[J]. 中国环境科学, 41(2): 622-632. |
ZHANG Q, LI L J, ZHAO W H, et al., 2021. Emission characteristics of vocs from forests and its impact on regional air quality in Beijing[J]. China Environmental Science, 41(2): 622-632. | |
[52] | 张蔷, 李令军, 赵文慧, 等, 2022. 北京森林BVOCs排放现状及动态变化特征分析[J]. 中国环境科学, 42(9): 3991-4000. |
ZHANG Q, LI L J, ZHAO W H, et al., 2022. The current status and characteristics of variations in forest bvocs emissions in Beijing[J]. China Environmental Science, 42(9): 3991-4000. | |
[53] | 赵静, 白郁华, 王志辉, 等, 2004. 我国植物VOCs排放速率的研究[J]. 中国环境科学, 24(6): 654-657. |
ZHAO J, BAI Y H, WANG Z H, et al., 2004. Studies on the emission rates of plants VOCs in China[J]. China Environmental Science, 24(6): 654-657. |
[1] | BAO Xueer, BAO Hai, ZHAO Lingling, ANG Geilama. Characteristics of Volatile Organic Compounds Emissions from Crops in the Inner Mongolian Plateau [J]. Ecology and Environmental Sciences, 2025, 34(9): 1442-1451. |
[2] | CHEN Siyu, SUN Lijuan, SU Congcong, YU Xingna. Characteristics of Volatile Organic Compounds and its Contribution to Secondary Organic Aerosol and Ozone in Spring and Summer in Taiyuan [J]. Ecology and Environmental Sciences, 2025, 34(4): 548-555. |
[3] | YAN Xuejun, HAO Saimei, ZHANG Rongrong, QIN Hua, GAO Sulian, WANG Feng, JIN Xianzhong, SUN Youmin, ZHANG Guiqin. Composition Spectrum and Emission Estimation of VOCs from Furniture Malls [J]. Ecology and Environmental Sciences, 2023, 32(6): 1070-1077. |
[4] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environmental Sciences, 2023, 32(5): 956-968. |
[5] | WEN Lirong, JIANG Ming, HUANG Bo, YUAN Luan, ZHOU Yan, LU Weimei, ZHANG Ying, LIU Ming, ZHANG Liyun. Analysis of Ozone Pollution Causes and Source Analysis of VOCs in Typical Areas of Pearl River Delta: A Case Study of Zhongshan City [J]. Ecology and Environmental Sciences, 2023, 32(3): 500-513. |
[6] | XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing [J]. Ecology and Environmental Sciences, 2023, 32(2): 245-255. |
[7] | CHEN Xuequan, KONG Bin, LAN Qing, YU Zhiquan, XIE Yinsi, HUANG Junyi. Emission Characteristics and Ozone Formation Potential Assessment of Volatile Organic Compounds (VOCs) from Adhesive Manufacturing Industry [J]. Ecology and Environmental Sciences, 2022, 31(4): 750-758. |
[8] | LI Yinghui, GUO Qianjin, YAN Yulong, HU Dongmei, DENG Mengjie, PENG Lin. Variation Characteristics and Source Apportionment of Ambient BTEX in Jincheng City [J]. Ecology and Environmental Sciences, 2022, 31(3): 504-511. |
[9] | LI Shaoning, TAO Xueying, LI Huimin, ZHAO Na, XU Xiaotian, LU Shaowei. Study on Dynamic Characteristics of BVOCs Released from Platycladus orientalis and Salix babylonica in Growing Season [J]. Ecology and Environmental Sciences, 2022, 31(2): 257-264. |
[10] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environmental Sciences, 2022, 31(1): 187-195. |
[11] | WANG Jian, BAO Hai, LI Dayi, LIU Zhiyuan, YANG Na. Emissions of Volatile Organic Compounds from Landscape Trees in Arid and Semi-Arid Region During Summer [J]. Ecology and Environmental Sciences, 2021, 30(6): 1168-1176. |
[12] | BAI Jianhui. The Relationships between BVOC Emission Fluxes and Their Influencing Factors in A Subtropical Pinus Forest [J]. Ecology and Environmental Sciences, 2021, 30(5): 889-897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn