Ecology and Environment ›› 2023, Vol. 32 ›› Issue (8): 1433-1439.DOI: 10.16258/j.cnki.1674-5906.2023.08.008
• Review • Previous Articles Next Articles
LI Hu1,3,**(), ZHAO Sha1,2(
), HUANG Fuyi1,3, SU Jianqiang1,3
Received:
2023-02-22
Online:
2023-08-18
Published:
2023-11-08
Contact:
LI Hu
李虎1,3,**(), 赵沙1,2(
), 黄福义1,3, 苏建强1,3
通讯作者:
李虎
作者简介:
李虎(1989年生),男,副研究员,主要研究方向为微生物生态学。E-mail: hli@iue.ac.cn第一联系人:*赵沙(1999年生),女,硕士研究生,主要研究方向为微生物生态学。E-mail: shazhao@iue.ac.cn
基金资助:
CLC Number:
LI Hu, ZHAO Sha, HUANG Fuyi, SU Jianqiang. Variations in Composition and Distribution of Viruses in Soils with Different Human Activity[J]. Ecology and Environment, 2023, 32(8): 1433-1439.
李虎, 赵沙, 黄福义, 苏建强. 不同程度人为干扰土壤中病毒组成及分布差异[J]. 生态环境学报, 2023, 32(8): 1433-1439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.08.008
土壤病毒科分类 | 植物病毒 | 动物病毒 | 与人类相关的病毒 |
---|---|---|---|
dsDNA | Phycodnaviridae (Adriaenssens et al., | Baculoviridae (Segobola et al., | Poxviridae (Segobola et al., |
Caulimoviridae (Yu et al., | Ampullaviridae (Segobola et al., | Papillomaviridae (Yu et al., 阮楚晋等, | |
Genomoviridae (Weitz et al., | Bicaudaviridae (Segobola et al., | Adenoviridae (阮楚晋等, | |
Alphasatellitidae (Weitz et al., | Asfarviridae (Segobola et al., | Alloherpesviridae (阮楚晋等, | |
Polydnaviridae (Liang et al., | Herpesviridae (Zablocki et al., | ||
Ascoviridae (Adriaenssens et al., | |||
Nudiviridae (Segobola et al., | |||
Iridoviridae (Segobola et al., | |||
ssDNA | Geminiviridae (Weitz et al., | Smacoviridae (Weitz et al., | Anelloviridae (Adriaenssens et al., |
Nanoviridae (Yu et al., Yu et al., | Parvoviridae (阮楚晋等, | Circoviridae (Yu et al., | |
逆转录病毒 | Retroviridae (Segobola et al., | ||
RNA 病毒 | Amalgaviridae (Chen et al., | Polycipiviridae (Chen et al., | Flaviviridae (Chen et al., |
Betaflexiviridae (Chen et al., | Birnaviridae (Chen et al., | Partitiviridae (Chen et al., | |
Alphaflexiviridae (Chen et al., | Leishbuviridae (Chen et al., | Picornaviridae (Chen et al., | |
Endornaviridae (Chen et al., | Phenuiviridae (Chen et al., | Spinareovirinae (Chen et al., | |
Sobemovirus (Chen et al., | Nodaviridae (Chen et al., | ||
Secoviridae (Chen et al., | Permutotetraviridae (Chen et al., | ||
Potyviridae (Chen et al., | Iflaviridae (Chen et al., | ||
Tombusvirida (Chen et al., | Dicistroviridae (Chen et al., |
Table 1 Summary of viruses in different land use modes
土壤病毒科分类 | 植物病毒 | 动物病毒 | 与人类相关的病毒 |
---|---|---|---|
dsDNA | Phycodnaviridae (Adriaenssens et al., | Baculoviridae (Segobola et al., | Poxviridae (Segobola et al., |
Caulimoviridae (Yu et al., | Ampullaviridae (Segobola et al., | Papillomaviridae (Yu et al., 阮楚晋等, | |
Genomoviridae (Weitz et al., | Bicaudaviridae (Segobola et al., | Adenoviridae (阮楚晋等, | |
Alphasatellitidae (Weitz et al., | Asfarviridae (Segobola et al., | Alloherpesviridae (阮楚晋等, | |
Polydnaviridae (Liang et al., | Herpesviridae (Zablocki et al., | ||
Ascoviridae (Adriaenssens et al., | |||
Nudiviridae (Segobola et al., | |||
Iridoviridae (Segobola et al., | |||
ssDNA | Geminiviridae (Weitz et al., | Smacoviridae (Weitz et al., | Anelloviridae (Adriaenssens et al., |
Nanoviridae (Yu et al., Yu et al., | Parvoviridae (阮楚晋等, | Circoviridae (Yu et al., | |
逆转录病毒 | Retroviridae (Segobola et al., | ||
RNA 病毒 | Amalgaviridae (Chen et al., | Polycipiviridae (Chen et al., | Flaviviridae (Chen et al., |
Betaflexiviridae (Chen et al., | Birnaviridae (Chen et al., | Partitiviridae (Chen et al., | |
Alphaflexiviridae (Chen et al., | Leishbuviridae (Chen et al., | Picornaviridae (Chen et al., | |
Endornaviridae (Chen et al., | Phenuiviridae (Chen et al., | Spinareovirinae (Chen et al., | |
Sobemovirus (Chen et al., | Nodaviridae (Chen et al., | ||
Secoviridae (Chen et al., | Permutotetraviridae (Chen et al., | ||
Potyviridae (Chen et al., | Iflaviridae (Chen et al., | ||
Tombusvirida (Chen et al., | Dicistroviridae (Chen et al., |
细菌 病毒科 | 不同程度人为干扰 | ||
---|---|---|---|
自然环境 | 农田 | 城市绿地 | |
dsDNA | Siphoviridae (Adriaenssens et al., Adriaenssens et al., Yu et al., | Siphoviridae (Weitz et al., | Siphoviridae (Liao et al., |
Myoviridae (Adriaenssens et al., Adriaenssens et al., Yu et al., | Myoviridae (Weitz et al., | Myoviridae (Liao et al., | |
Podoviridae (Adriaenssens et al., | Podoviridae (Weitz et al., | Podoviridae (Liao et al., | |
Ampullaviridae (Segobola et al., | Herelleviridae (阮楚晋等, | Pithoviridae (Liao et al., | |
Sal.terprovirus (Segobola et al., | Ackermannviridae科 (阮楚晋等, | Lavidaviridae (Liao et al., | |
Tectiviridae (Adriaenssens et al., | Tristromaviridae (阮楚晋等, | Ackermannviridae (Liao et al., | |
Inoviridae (Adriaenssens et al., | Inoviridae (Liang et al., | Tectiviridae (Liao et al., | |
Turriviridae (Segobola et al., | Lavidaviridae (阮楚晋等, | ||
Bicaudaviridae (Segobola et al., | Pithoviridae (阮楚晋等, | ||
Marseilleviridae (Jin et al., | |||
ssDNA | Microviridae (Adriaenssens et al., | Microviridae (Liang et al., | |
Mimiviridae (Zablocki et al., Segobola et al., | Mimiviridae (Liang et al., Jin et al., | ||
RNA | Deltaflexiviridae (Chen et al., | Cystoviridae (Chen et al., | |
Endornaviridae (Chen et al., | Endornaviridae (Chen et al., | ||
Barnaviridae (Chen et al., | Barnaviridae (Chen et al., | ||
Mymonaviridae (Chen et al., | Mymonaviridae (Chen et al., | ||
Botourmiaviridae (Chen et al., | Botourmiaviridae (Chen et al., | ||
Leviviridae (Chen et al., | Leviviridae (Chen et al., | ||
Mitoviridae (Chen et al., | Mitoviridae (Chen et al., | ||
Chrysoviridae (Chen et al., | Chrysoviridae (Chen et al., | ||
Totiviridae (Chen et al., | Totiviridae (Chen et al., |
Table 2 Viruses in soils with different land-uses
细菌 病毒科 | 不同程度人为干扰 | ||
---|---|---|---|
自然环境 | 农田 | 城市绿地 | |
dsDNA | Siphoviridae (Adriaenssens et al., Adriaenssens et al., Yu et al., | Siphoviridae (Weitz et al., | Siphoviridae (Liao et al., |
Myoviridae (Adriaenssens et al., Adriaenssens et al., Yu et al., | Myoviridae (Weitz et al., | Myoviridae (Liao et al., | |
Podoviridae (Adriaenssens et al., | Podoviridae (Weitz et al., | Podoviridae (Liao et al., | |
Ampullaviridae (Segobola et al., | Herelleviridae (阮楚晋等, | Pithoviridae (Liao et al., | |
Sal.terprovirus (Segobola et al., | Ackermannviridae科 (阮楚晋等, | Lavidaviridae (Liao et al., | |
Tectiviridae (Adriaenssens et al., | Tristromaviridae (阮楚晋等, | Ackermannviridae (Liao et al., | |
Inoviridae (Adriaenssens et al., | Inoviridae (Liang et al., | Tectiviridae (Liao et al., | |
Turriviridae (Segobola et al., | Lavidaviridae (阮楚晋等, | ||
Bicaudaviridae (Segobola et al., | Pithoviridae (阮楚晋等, | ||
Marseilleviridae (Jin et al., | |||
ssDNA | Microviridae (Adriaenssens et al., | Microviridae (Liang et al., | |
Mimiviridae (Zablocki et al., Segobola et al., | Mimiviridae (Liang et al., Jin et al., | ||
RNA | Deltaflexiviridae (Chen et al., | Cystoviridae (Chen et al., | |
Endornaviridae (Chen et al., | Endornaviridae (Chen et al., | ||
Barnaviridae (Chen et al., | Barnaviridae (Chen et al., | ||
Mymonaviridae (Chen et al., | Mymonaviridae (Chen et al., | ||
Botourmiaviridae (Chen et al., | Botourmiaviridae (Chen et al., | ||
Leviviridae (Chen et al., | Leviviridae (Chen et al., | ||
Mitoviridae (Chen et al., | Mitoviridae (Chen et al., | ||
Chrysoviridae (Chen et al., | Chrysoviridae (Chen et al., | ||
Totiviridae (Chen et al., | Totiviridae (Chen et al., |
[1] |
ADRIAENSSENS E M, KRAMER R, VAN GOETHEM M W, et al., 2017. Environmental drivers of viral community composition in Antarctic soils identified by viromes[J]. Microbiome, 5(1): 83.
DOI URL |
[2] |
ADRIAENSSENS E M, VAN ZYL L, DE MAAYER P, et al., 2015. Metagenomic analysis of the viral community in Namib Desert hypoliths[J]. Environmental Microbiology, 17(2): 480-495.
DOI PMID |
[3] |
BONDY-DENOMY J, QIAN J, WESTRA E R, et al., 2016. Prophages mediate defense against phage infection through diverse mechanisms[J]. The ISME Journal, 10(12): 2854-2866.
DOI |
[4] |
BRAGA L P P, SOUCY S M, AMGARTEN D E, et al., 2018. Bacterial diversification in the light of the interactions with Phages: The genetic symbionts and their role in ecological speciation[J]. Frontiers in Ecology and Evolution, 6: 00006
DOI URL |
[5] |
BRAGA L P P, SPOR A, KOT W, et al., 2020. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios[J]. Microbiome, 8(1): 52.
DOI PMID |
[6] |
BRUM J R, SULLIVAN M B, 2015. Rising to the challenge: Accelerated pace of discovery transforms marine virology[J]. Nature Reviews Microbiology, 13(3): 147-159.
DOI PMID |
[7] |
CAI Z Q, ZHANG Y H, YANG C, et al., 2018. Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China[J]. Catena, 165: 369-380.
DOI URL |
[8] |
CHEN Q, YANG F, CHENG X L, 2022a. Effects of land use change type on soil microbial attributes and their controls: Data synthesis[J]. Ecological Indicators, 138: 108852.
DOI URL |
[9] |
CHEN Y M, SADIQ S, TIAN J H, et al., 2022b. RNA viromes from terrestrial sites across China expand environmental viral diversity[J]. Nature Microbiol, 7(8): 1312-1323.
DOI |
[10] |
CORNELL C R, ZHANG Y, VAN NOSTRAND J D, et al., 2021. Temporal changes of virus-like particle abundance and metagenomic comparison of viral communities in cropland and prairie soils[J]. mSphere, 6(3): e0116020.
DOI URL |
[11] |
EMERSON J B, ROUX S, BRUM J R, et al., 2018. Host-linked soil viral ecology along a permafrost thaw gradient[J]. Nature Microbiol, 3(8): 870-880.
DOI |
[12] |
FARUQUE S M, MEKALANOS J J, 2012. Phage-bacterial. interactions in the evolution of toxigenic Vibrio cholerae[J]. Virulence, 3(7): 556-565.
DOI PMID |
[13] |
FLIES E J, SKELLY C, NEGI S S, et al., 2017. Biodiverse green spaces: A prescription for global urban health[J]. Frontiers in Ecology and the Environment, 15(9): 510-516.
DOI URL |
[14] |
FRENCH K E, TKACZ A, TURNBULL L A, 2017. Conversion of grassland to arable decreases microbial diversity and alters community composition[J]. Applied Soil Ecology, 110: 43-52.
DOI URL |
[15] |
FUHRMAN J A, 1999. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 399(6736): 541-548.
DOI URL |
[16] |
GREGORY A C, ZAYED A A, CONCEICAO-NETO N, et al., 2019. Marine DNA viral macro- and microdiversity from pole to pole[J]. Cell, 177(5): 1109-1123e1114.
DOI PMID |
[17] |
GUIDI L, CHAFFRON S, BITTNER L, et al., 2016. Plankton networks driving carbon export in the oligotrophic ocean[J]. Nature, 532(600): 465-470.
DOI |
[18] |
GUO L B, GIFFORD R M, 2002. Soil carbon stocks and land use change: A meta analysis[J]. Global Change Biology, 8(4): 345-360.
DOI URL |
[19] |
HAN L L, YU D T, ZHANG L M, et al., 2017. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils[J]. Scientific Reports, 7: 45142.
DOI |
[20] |
HOWARD-VARONA C, HARGREAVES K R, ABEDON S T, et al., 2017. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages[J]. The ISME Journal, 11(7): 1511-1520.
DOI URL |
[21] |
HUANG D, YU P F, YE M, et al., 2021. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 9(1): 150.
DOI PMID |
[22] | HWANG Y, RAHLFF J, SCHULZE-MAKUCH D, et al., 2021. Diverse viruses carrying genes for microbial extremotolerance in the atacama desert hyperarid soil[J]. mSystems, 6(3): e00385-21. |
[23] |
JIN M, GUO X, ZHANG R, et al., 2019. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome, 7(2): 58.
DOI |
[24] |
KNOWLES B, SILVEIRA C B, BAILEY B A, et al., 2016. Lytic to temperate switching of viral Communities[J]. Nature, 531(7595): 466-470.
DOI |
[25] |
KOSKELLA B, BROCKHURST M A, 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J]. Fems Microbiology Reviews, 38(5): 916-931.
DOI PMID |
[26] |
LIANG X L, WAGNER R E, ZHUANG J, et al., 2019. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol[J]. Soil Biology and Biochemistry, 137: 107546.
DOI URL |
[27] |
LIANG X L, WANG Y S, ZHANG Y, et al., 2021. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants[J]. Applied Soil Ecology, 168: 104138.
DOI URL |
[28] |
LIANG X L, ZHANG Y Y, WOMMACK K E, et al., 2020. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity[J]. Soil Biology and Biochemistry, 144(3): 107767.
DOI URL |
[29] |
LIAO H, LI H, DUAN C S, et al., 2022. Response of soil viral communities to land use changes[J]. Nature Communication, 13(1): 6027.
DOI |
[30] |
MERINO-MARTÍN L, STOKES A, GWEON H S, et al., 2021. Interacting effects of land use type, microbes and plant traits on soil aggregate stability[J]. Soil Biology and Biochemistry, 154: 108072.
DOI URL |
[31] |
NARR A, NAWAZ A, WICK L Y, et al., 2017. Soil viral communities vary temporal.ly and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD)[J]. Frontiers in Microbiology, 8: 1975.
DOI PMID |
[32] |
PRESTEL E, SALAMITOU S, DUBOW M S, 2008. An examination of the bacteriophages and bacteria of the Namib desert[J]. Journal of Microbiology, 46(4): 364-372.
DOI PMID |
[33] |
PRIGENT M, LEROY M, CONFALONIERI F, et al., 2005. A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert[J]. Extremophiles, 9(4): 289-296.
PMID |
[34] |
QIAN X, GUNTURU S, GUO J, et al., 2021. Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical Ecosystems[J]. Microbiome, 9(1): 108.
DOI PMID |
[35] |
RODRIGUEZ-VALERA F, MARTÍN-CUADRADO A B, RODRIGUEZ-BRITO B, et al., 2009. Explaining microbial population genomics through phage predation[J]. Nature Reviews Microbiology, 7(11): 828-836.
DOI |
[36] |
ROUX S, BRUM J R, DUTILH B E, et al., 2016. Ecogenomics and potential biogeochemical. impacts of globally abundant ocean viruses[J]. Nature, 537(7622): 689-693.
DOI |
[37] |
SANTOS-MEDELLIN C, ZINKE L A, TER HORST A M, et al., 2021. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral Communities[J]. The ISME Journal., 15(7): 1956-1970.
DOI |
[38] |
SANTOS S S, SCHOLER A, NIELSEN T K, et al., 2020. Land use as a driver for protist community structure in soils under agricultural use across Europe[J]. Science of The Total. Environment, 717: 137228.
DOI URL |
[39] |
SCHAUFLER G, KITZLER B, SCHINDLBACHER A, et al., 2010, Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature[J]. European Journal. of Soil Science, 61(5): 683-696.
DOI URL |
[40] |
SEGOBOLA J, ADRIAENSSENS E, TSEKOA T, et al., 2018. Exploring viral diversity in a unique South African soil habitat[J]. Scientific Reports, 8(1): 111.
DOI PMID |
[41] |
SILVEIRA C B, ROHWER F L, 2016. Piggyback-the-Winner in host-associated microbial communities[J]. NPJ Biofilms Microbiomes, 2(1): 16010.
DOI |
[42] |
STARR E P, NUCCIO E E, PETT-RIDGE J, et al., 2019. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil[J]. Proceedings of the National Academy of Sciences USA, 116(51): 25900-25908.
DOI URL |
[43] |
THINGSTAD T F, 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems[J]. Limnology and Oceanography, 45(6): 1320-1328.
DOI URL |
[44] |
THINGSTAD T F, VAGE S, STORESUND J E, et al., 2014. A theoretical analysis of how strain-specific viruses can control microbial species diversity[J]. Proceedings of the National Academy of Sciences USA, 111(21): 7813-7818.
DOI URL |
[45] |
VOS M, BIRKETT P J, BIRCH E, et al., 2009. Local adaptation of bacteriophages to their bacterial hosts in soil[J]. Science, 325(5942): 833-833.
DOI PMID |
[46] |
WANG X F, WEI Z, YANG K M, et al., 2019. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnol, 37(12): 1513-1520.
DOI |
[47] |
WANG Y J, LIU Y, WU Y X, et al., 2022. Heterogeneity of soil bacterial and bacteriophage communities in three rice agroecosystems and potential impacts of bacteriophage on nutrient cycling[J]. Environmental Microbiome, 17(1): 17.
DOI PMID |
[48] |
WEITZ J S, STOCK C A, WILHELM S W, et al., 2015. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes[J]. The ISME Journal, 9(6): 1352-1364.
DOI |
[49] |
WILLIAMSON K E, FUHRMANN J J, WOMMACK K E, et al., 2017. Viruses in soil ecosystems: An unknown quantity within an unexplored territory[J]. Annual Review of Virology, 4(1): 201-219.
DOI PMID |
[50] |
WILLIAMSON K E, RADOSEVICH M, SMITH D W, et al., 2007. Incidence of lysogeny within temperate and extreme soil environments[J]. Environmental Microbiology, 9(10): 2563-2574.
PMID |
[51] |
WILLIAMSON K E, RADOSEVICH M, WOMMACK K E, 2005. Abundance and diversity of viruses in six Delaware soils[J]. Applied And Environmental Microbiology, 71(6): 3119-3125.
PMID |
[52] |
WILLIAMSON S J, ALLEN L Z, LORENZI H A, et al., 2012. Metagenomic exploration of viruses throughout the Indian Ocean[J]. PLoS One, 7(10): e42047.
DOI URL |
[53] |
WOMMACK K E, COLWELL R R, 2000. Virioplankton: Viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 64(1): 69-114.
DOI PMID |
[54] |
WU R N, DAVISON M R, GAO Y Q, et al., 2021. Moisture modulates soil reservoirs of active DNA and RNA viruses[J]. Communications Biology, 4(1): 992.
DOI PMID |
[55] |
WU R N, SMITH C A, BUCHKO G W, et al., 2022. Structural characterization of a soil viral auxiliary metabolic gene product - a functional chitosanase[J]. Nature Communication, 13(1): 5485.
DOI |
[56] |
YU D T, HE J Z, ZHANG L M, et al., 2018a. Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud volcanic soil in Xinjiang, China[J]. Journal. of Soils and Sediments, 19(1): 81-90.
DOI |
[57] |
YU D T, HAN L L, ZHANG L M, et al., 2018b. Diversity and distribution characteristics of viruses in soils of a marine-terrestrial ecotone in east China[J]. Microbial Ecology, 75(2): 375-386.
DOI URL |
[58] |
ZABLOCKI O, ADRIAENSSENS E M, COWAN D, 2016. Diversity and ecology of viruses in hyperarid desert soils[J]. Applied And Environmental Microbiology, 82(3): 770-777.
DOI PMID |
[59] |
ZHENG X X, JAHN M T, SUN M M, et al., 2022. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes[J]. The ISME Journal, 16: 1397-1408.
DOI |
[60] |
ZHU D, CHEN Q L, LI H, et al., 2018. Land use influences antibiotic resistance in the microbiome of soil collembolans orchesellides sinensis[J]. Environmental Science & Technology, 52(5): 14088-14098.
DOI URL |
[61] | 黄鑫榕, 苏晓轩, 周曙仡聃, 等, 2021. 城市绿地微生物及其对城市化的响应[J]. 微生物学报, 61(12): 3887-3902. |
HUANG X R, SU X X, ZHOU S Y D, et al., 2021. Review on the microorganisms in urban green space and their response to urbanization[J]. Acta Microbiologica Sinica, 61(12): 3887-3902. | |
[62] | 阮楚晋, 熊广州, 牛欣尧, 等, 2022. 一个东北农田黑土样品宏病毒组的初步分析[J]. 土壤学报, 59(5): 1447-1456. |
RUAN C J, XIONG G Z, NIU X Y, et al., 2022. Preliminary analysis of the virus metagenome in a farmland black soil of northeast China[J]. Acta Pedologica Sinica, 59(5): 1447-1456. | |
[63] | 谢天侯, 陈卫平, 王美娥, 等, 2019. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 39(34): 1154-1164. |
XIE T H, CHEN W P, WANG M E, et al., 2019. Impact of urbanization on the soil ecological environment: A review[J]. Acta Ecologica Sinica, 39(4): 1154-1164. |
[1] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[2] | FENG Yiqing, HAO Likai, GUO Yuan, XU Fei, XU Heng. Spatio-temporal Evolution Characteristics of Microbiome in Acid Mine Drainage and Microbial-mineral Interaction Mechanism [J]. Ecology and Environment, 2022, 31(5): 1032-1046. |
[3] | YI Jiahui, HE Chao, YANG Lu, YE Zhixiang, TIAN Ya, KE Biqin, MU Hang, TU Peiyue, HAN Chaoran, HONG Song. Spatial Correlation between Changes in Global Temperature and Major Air Pollutants during the COVID-19 Pandemic [J]. Ecology and Environment, 2022, 31(4): 740-749. |
[4] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environment, 2022, 31(11): 2111-2123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn