Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (5): 678-687.DOI: 10.16258/j.cnki.1674-5906.2025.05.002
• Research Article【Ecology】 • Previous Articles Next Articles
Received:
2024-10-05
Online:
2025-05-18
Published:
2025-05-16
通讯作者:
*
作者简介:
徐茂宏(1972年生),男,林业高级工程师,农学学士,从事自然保护区管理、生物多样性保护、林区建设方面的研究。E-mail: 463318919@qq.com
基金资助:
CLC Number:
XU Maohong. The Study on the Elevational Patterns and Underlying Influence Factors of Soil Microbial α Diversity in a Warm-temperate Forest[J]. Ecology and Environmental Sciences, 2025, 34(5): 678-687.
徐茂宏. 暖温带森林土壤微生物α多样性海拔梯度格局及其影响因素[J]. 生态环境学报, 2025, 34(5): 678-687.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.05.002
因子 类别 | 环境变量 | 缩写 | 范围 | 平均值± 标准差 |
---|---|---|---|---|
土壤 | 土壤pH值 | pH | 5.03-7.95 | 6.14±0.57 |
土壤容重/(g∙cm−3) | BD | 0.46-1.4 | 0.81±0.23 | |
土壤水分质量分数/% | SWC | 10.67-95.81 | 49.56±25.52 | |
土壤孔隙度/% | SP | 33.61-76.17 | 61.87±11.31 | |
有机碳质量分数/(g∙kg−1) | SOC | 11.17-90.77 | 50.61±19.95 | |
全磷质量分数/(g∙kg−1) | TP | 0.36-2.51 | 1.13±0.51 | |
有效磷质量分数/(mg∙kg−1) | AP | 1.36-3.96 | 2.01±0.55 | |
铵态氮质量分数/(mg∙kg−1) | NH4+-N | 0.31-49.96 | 16.95±12.55 | |
硝态氮质量分数/(mg∙kg−1) | NO3−-N | 0.06-91.03 | 29.45±24.02 | |
全钾质量分数(以K2O计)/% | TK | 1.45-3.42 | 2.08±0.37 | |
有效钾质量分数/(mg∙kg−1) | AK | 38.1-379.4 | 155.31±76.07 | |
植物多样性 | 植物均匀度指数 | Pielou | 0.12-0.89 | 0.6±0.22 |
植物物种丰富度 | Richness | 5-20 | 11.07±4.54 | |
灌木比例/% | SPro | 0-61.54 | 33.35±16.89 | |
菌根树种组成 | 外生菌根树种多度 | EA | 1-206 | 82.8±53.37 |
外生菌根树种胸高断面积/m2 | EB | 0-2.41 | 1.34±0.53 | |
外生菌根树种/丛枝菌根树种 | ECM/AM | 0.2-4 | 1.12±0.98 |
Table 1 The list of environmental factors used in this study
因子 类别 | 环境变量 | 缩写 | 范围 | 平均值± 标准差 |
---|---|---|---|---|
土壤 | 土壤pH值 | pH | 5.03-7.95 | 6.14±0.57 |
土壤容重/(g∙cm−3) | BD | 0.46-1.4 | 0.81±0.23 | |
土壤水分质量分数/% | SWC | 10.67-95.81 | 49.56±25.52 | |
土壤孔隙度/% | SP | 33.61-76.17 | 61.87±11.31 | |
有机碳质量分数/(g∙kg−1) | SOC | 11.17-90.77 | 50.61±19.95 | |
全磷质量分数/(g∙kg−1) | TP | 0.36-2.51 | 1.13±0.51 | |
有效磷质量分数/(mg∙kg−1) | AP | 1.36-3.96 | 2.01±0.55 | |
铵态氮质量分数/(mg∙kg−1) | NH4+-N | 0.31-49.96 | 16.95±12.55 | |
硝态氮质量分数/(mg∙kg−1) | NO3−-N | 0.06-91.03 | 29.45±24.02 | |
全钾质量分数(以K2O计)/% | TK | 1.45-3.42 | 2.08±0.37 | |
有效钾质量分数/(mg∙kg−1) | AK | 38.1-379.4 | 155.31±76.07 | |
植物多样性 | 植物均匀度指数 | Pielou | 0.12-0.89 | 0.6±0.22 |
植物物种丰富度 | Richness | 5-20 | 11.07±4.54 | |
灌木比例/% | SPro | 0-61.54 | 33.35±16.89 | |
菌根树种组成 | 外生菌根树种多度 | EA | 1-206 | 82.8±53.37 |
外生菌根树种胸高断面积/m2 | EB | 0-2.41 | 1.34±0.53 | |
外生菌根树种/丛枝菌根树种 | ECM/AM | 0.2-4 | 1.12±0.98 |
[1] | BENGTSSON J, SANNINO P, 2016. Soil biodiversity and ecosystem functioning: A multifaceted perspective[J]. Ecology Letters, 19(10): 1176-1189. |
[2] | BRYANT J, LAMANNA C, MORLON H, et al., 2008. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 105 (Supplement 1): 11505-11511. |
[3] |
FIERER N, JACKSON R B, 2006. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(3): 626-631.
DOI PMID |
[4] | FU F W, LI J R, LI S F, et al., 2023. Elevational distribution patterns and drivers of soil microbial diversity in the Sygera Mountains, southeastern Tibet, China[J]. Catena, 221(Part A): 106738. |
[5] | HEDĚNEC P, NILSSON L O, ZHENG H, et al., 2020. Mycorrhizal association of common European tree species shapes biomass and metabolic activity of bacterial and fungal communities in soil[J]. Soil Biology and Biochemistry, 149: 107933. |
[6] | HEDĚNEC P, ZHENG H, SIQUEIRA D P, et al., 2023. Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties[J]. Forest Ecology and Management, 527: 120608. |
[7] | HOOPER D U, ADAIR E C, CARDINALE B J, et al., 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecological Monographs, 75: 3-35. |
[8] | JI L, YANG Y C, YANG L X, 2021. Seasonal variations in soil fungal communities and co-occurrence networks along an altitudinal gradient in the cold temperate zone of China: A case study on Oakley Mountain[J]. Catena, 204: 105448. |
[9] | KORNER C, 2007. The use of “altitude” in ecological research[J]. Trends in Ecology & Evolution, 22(11): 569-574. |
[10] | LI G, XU G, SHEN C, et al., 2016. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline[J]. Science China Life Sciences, 59(11): 1177-1186. |
[11] | LIAW A, WIENER M, 2002. Classification and Regression by randomForest[J]. R News, 2(3): 18-22. |
[12] |
LINDAHL B D, TUNLID A, BOBERG J, et al., 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest[J]. New Phytologist, 173(3): 611-620.
DOI PMID |
[13] | LUO Y Q, ZHAO X Y, WANG T, et al., 2017. Plant root decomposition and its responses to biotic and abiotic factors[J]. Acta Prataculturae Sinica, 26(2): 197-207. |
[14] | MA L W, LIU L, LU Y S, et al., 2022. When microclimates meet soil microbes: Temperature controls soil microbial diversity along an elevational gradient in subtropical forests[J]. Soil Biology and Biochemistry, 166: 108566. |
[15] | MARGESIN R, JUD M, TSCHERKO D, et al., 2009. Microbial communities and activities in alpine and subalpine soils[J]. FEMS Microbiol Ecology, 67(2): 208-218. |
[16] | MARON P A, LEMANCEAU P, RAAIJMAKERS J M, et al., 2011. Soil microbial community structure and functional diversity in relation to ecosystem functioning[J]. Soil Biology and Biochemistry, 43(9): 1808-1818. |
[17] |
NI Y Y, YANG T, ZHANG K P, et al., 2018. Fungal communities along a small-scale elevational gradient in an alpine tundra are determined by soil carbon nitrogen ratios[J]. Frontiers in Microbiology, 9: 1815.
DOI PMID |
[18] | O’BRIEN R M, 2007. A caution regarding rules of thumb for variance inflation factors[J]. Quality & Quantity, 41(5): 673-690. |
[19] | PATOVA E, NOVAKOVSKAYA I, GUSEV E, et al., 2023. Diversity of cyanobacteria and algae in biological soil crusts of the Northern Ural mountain region assessed through morphological and metabarcoding approaches[J]. Diversity, 15(10): 1080. |
[20] | PEAY K G, BARALOTO C, FINE P V, 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests[J]. The International Society for Microbial Ecology Journal, 7(9): 1852-1861. |
[21] |
PROBER S M, LEFF J W, BATES S T, et al., 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecology Letters, 18(1): 85-95.
DOI PMID |
[22] | ROCARPIN P, GACHET S, METZNER K, et al., 2016. Moisture and soil parameters drive plant community assembly in Mediterranean temporary pools[J]. Hydrobiologia, 781(1): 55-66. |
[23] | SHEN C, SHI Y, FAN K, et al., 2019. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 95(2): fiz003. |
[24] | SILES J A, CAJTHAML T, MINERBI S, et al., 2016. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils[J]. FEMS Microbiology Ecology, 92(3): fiw008. |
[25] | SINGAVARAPU B, BEUGNON R, BRUELHEIDE H, et al., 2022. Tree mycorrhizal type and tree diversity shape the forest soil microbiota[J]. Environmental Microbiology, 24(9): 4236-4255. |
[26] |
SINGH D, TAKAHASHI K, KIM M, et al., 2012. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[J]. Microbial Ecology, 63(2): 429-437.
DOI PMID |
[27] |
SOUDZILOVSKAIA N A, VAESSEN S, BARCELO M, et al., 2020. FungalRoot: Global online database of plant mycorrhizal associations[J]. New Phytologist, 227(3): 955-966.
DOI PMID |
[28] | TEDERSOO L, BAHRAM M, PÕLME S, et al., 2014. Global diversity and geography of soil fungi[J]. Science, 346(6213): 1256688. |
[29] | WU H, XIANG W, OUYANG S, et al., 2019. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability[J]. Functional Ecology, 33(8): 1549-1560. |
[30] | XING H, JIAO S, WU X, et al., 2023. Proportion of mycorrhiza-associated trees mediates community assemblages of soil fungi but not of bacteria[J]. Fungal Ecology, 64: 101251. |
[31] | YAMAUCHI D H, GARCIA G H, TEIXEIRA M DE M, et al., 2021. Soil mycobiome is shaped by vegetation and microhabitats: A regional-scale study in Southeastern Brazil[J]. Journal of Fungi, 7(8): 587. |
[32] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agricultural chemistry analysis[M]. The third edition. Beijing: China Agriculture Press. | |
[33] | 贺纪正, 李晶, 郑袁明, 2013. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 21(4): 412-421. |
HE J Z, LI J, ZHENG Y M, 2013. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 21(4): 412-421. | |
[34] | 黄正谊, 苏延桂, 黄刚, 等, 2023. 尖峰岭热带天然林不同土层细菌群落多样性和组成的海拔变异规律[J]. 生态学报, 43(7): 1-12. |
HUANG Z Y, SU Y G, HUANG G, et al., 2023. The altitudinal patterns of bacterial community diversity and composition at different soil depths in Jianfengling mountain tropical forest[J]. Acta Ecologica Sinica, 43(7): 1-12. | |
[35] | 茹文明, 张峰, 2000. 中条山东段植被垂直带的数量分类研究[J]. 应用与环境生物学报, 6(3): 201-205. |
RU W M, ZHANG F, 2000. Study on vertical zonation of vegetation in the Eastern Part of the Zhongtiao Mountains, Shanxi[J]. Chinese Journal of Applied and Environmental Biology, 6(3): 201-205. |
[1] | DENG Pengfei, XIAO Yongyou, ZENG Changjin, GAO Yu, ZHANG Xiulan, CHEN Xingbin, XIAO Fuming, XU Xiaoniu. Characteristics of Community Structure and Species Diversity of a Long-term Abandoned Chinese Fir Plantation Forest [J]. Ecology and Environmental Sciences, 2025, 34(4): 511-520. |
[2] | GUAN Yuliang, GAN Xianhua, YIN Zuoyun, HUANG Yuhui, TAO Yuzhu, LI Kuan, ZHANG Weiqiang, DENG Caiqiong, ZENG Xiangyao, HUANG Fangfang. Distribution Pattern of Plant Diversity at Different Elevations in Nanling Nature Reserve [J]. Ecology and Environmental Sciences, 2024, 33(6): 877-887. |
[3] | WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships [J]. Ecology and Environmental Sciences, 2024, 33(6): 869-876. |
[4] | QING Caixia, CHEN Shengbin, DENG Jiewen, DENG Xingwei, LI Zhe, QIU Lu. The Effects of Habitat Amount, Habitat Quality and Meteorological Factors on the Species Diversity of Dung Beetles in Chengdu [J]. Ecology and Environmental Sciences, 2024, 33(5): 708-719. |
[5] | WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains [J]. Ecology and Environmental Sciences, 2024, 33(4): 520-530. |
[6] | CUI Panpan, YU Yang, QU Bo, SU Fangli. Effects of Enclosure on Plant Diversity and Vegetation Landscape in Degraded Riparian Grassland [J]. Ecology and Environmental Sciences, 2024, 33(11): 1708-1716. |
[7] | SONG Simeng, LIN Dongmei, ZHOU Hengyu, LUO Zongzhi, ZHANG Lili, YI Chao, LIN Hui, LIN Xingsheng, LIU Bin, SU Dewei, ZHENG Dan, YU Shikui, LIN Zhanxi. Effects of Planting Cenchrus fungigraminus on Plant Species Diversity and Soil Physicochemical Properties in the Ulan Buh Desert [J]. Ecology and Environmental Sciences, 2023, 32(9): 1595-1605. |
[8] | ZHAO Man, ZHANG Xiaoman, YANG Mingjie. Effects of Forest Fire Disturbance on Species Diversity and Soil Physicochemical Properties of Quercus variabilis and Quercus wutaishansea Mixed Forests [J]. Ecology and Environmental Sciences, 2023, 32(10): 1732-1740. |
[9] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environmental Sciences, 2023, 32(1): 26-35. |
[10] | CHEN Yao, LI Yunhong, SHAO Yingnan, LIU Yulong, LIU Yankun. Study on Species Diversity and Soil Physical and Chemical Characteristics of Broad-leaved Pinus koraiensis Forest [J]. Ecology and Environmental Sciences, 2022, 31(4): 679-687. |
[11] | FENG Ling, YU Lifei, WANG Yang, ZHANG Limin, ZHAO Qing, LI Fangbing. The Effects of the Functional Redundancy and Functional Diversity on the Community Stability in Different Stages of the Plant Communities Restoration in Karst Vegetation [J]. Ecology and Environmental Sciences, 2022, 31(4): 670-678. |
[12] | HU Jingda, ZHOU Haiju, HUANG Yongzhen, YAO Xianyu, YE Shaoming, YU Sufang. A Study on Plant Species Diversity and Soil Carbon and Nitrogen in Different Cunninghamia lanceolata Stand Types [J]. Ecology and Environmental Sciences, 2022, 31(3): 451-459. |
[13] | HE Bin, LI Qing, CHEN Qunli, LI Wangjun, YOU Ping. Altitudinal Pattern of Species Diversity of Pseudotsuga sinensis Communty in Northwestern Guizhou, China [J]. Ecology and Environmental Sciences, 2021, 30(6): 1111-1120. |
[14] | PAN Hongli, LI Huichao, YU Zhixiang, CAL Lei, LI Xuhua, LIU Xingliang. Plant Composition and Diversity of Invasive Communities of Lantana camara in Panzhihua City [J]. Ecology and Environmental Sciences, 2021, 30(6): 1177-1182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn