Ecology and Environment ›› 2024, Vol. 33 ›› Issue (3): 487-498.DOI: 10.16258/j.cnki.1674-5906.2024.03.017
• Review • Previous Articles
LU Ankang1(), ZHAO Guanhua2,*(
), WANG Hui2, ZHOU Lijian2, TANG Shengqun1, PENG Zhilong1
Received:
2023-09-05
Online:
2024-03-18
Published:
2024-05-08
Contact:
ZHAO Guanhua
卢安康1(), 赵冠华2,*(
), 王辉2, 周立坚2, 唐胜群1, 彭志龙1
通讯作者:
赵冠华
作者简介:
卢安康(1994年生),男(瑶族),助理工程师,硕士,主要从事矿山修复和环境水文地球化学领域研究。E-mail: 964876901@qq.com
基金资助:
CLC Number:
LU Ankang, ZHAO Guanhua, WANG Hui, ZHOU Lijian, TANG Shengqun, PENG Zhilong. Application and Research Development of Radioisotope 14C Dating in Karst Groundwater[J]. Ecology and Environment, 2024, 33(3): 487-498.
卢安康, 赵冠华, 王辉, 周立坚, 唐胜群, 彭志龙. 放射性同位素14C测年在岩溶地下水中的应用及研究进展[J]. 生态环境学报, 2024, 33(3): 487-498.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.03.017
同位素特征 | 14C校正年龄/a | 更新能力 |
---|---|---|
含3H | <60 | 强 |
无3H | 60‒1000 | 中 |
无3H | 1000‒10000 | 弱 |
无3H | >10000 | 无 |
Table 1 Classification of groundwater renewability
同位素特征 | 14C校正年龄/a | 更新能力 |
---|---|---|
含3H | <60 | 强 |
无3H | 60‒1000 | 中 |
无3H | 1000‒10000 | 弱 |
无3H | >10000 | 无 |
[1] |
TAYLOR B, 1997. On the isotopic composition of dissolved inorganic carbon in rivers and shallow groundwater: A diagrammatic approach to process identification and a more realistic model of the open system[J]. Radiocarbon, 39(3): 251-268.
DOI URL |
[2] | BAO Q M, XIAO W, CHAO T, et al., 2021. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology, 11(5): 919-926. |
[3] | BARILE F, BARONE S, FEDI M E, et al., 2019. The new sample preparation line for radiocarbon measurements at the infn bari laboratory[J]. Nuclear Instruments & Methods in Physics Research, 936: 75-77. |
[4] | BOCKGARD N, RODHE A, OLSSON K A, 2004. Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden[J]. Hydrogeology Journal, 12: 171-183. |
[5] |
BURGESS W G, HOQUE M A, MICHAEL H A, 2010. Vulnerability of deep groundwater in the bengal aquifer system to contamination by arsenic[J]. Nature Geoscience, 3(2): 83-87.
DOI |
[6] |
BUTSCHER C, AUCKENTHALER A, SCHEIDLER S, et al., 2011. Vali-dation of a numerical indicator of microbial contamination for karst springs[J]. Groundwater, 49(1): 66-76.
DOI URL |
[7] | CLARK I D, FRITZ P, 1997. Environmental isotopes in hydrogeology[M]. Boca Raton: Lewis Publishers. |
[8] |
CORNATON F, PERROCHET P, 2006. Groundwater age, life expectancy and transit time distributions in advective dispersive systems: Generalized reservoir theory[J]. Advances in Water Resources, 29(9): 1267-1291.
DOI URL |
[9] |
FAMIGLIETTI J S, FERGUSON G, 2021. The hidden crisisbeneath our feet[J]. Science, 372 (6540): 344-345.
DOI URL |
[10] | FANG S C, 2019. Study on 14C dating analysis of deep groundwater resources on islands[J]. Journal of Environmental Radioactivity, 208-209: 105994. |
[11] |
FONTES J C, GARNIER J M, 1979. Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach[J]. Water Resources Research, 15(2): 399-413.
DOI URL |
[12] | FREEZE R A, CHERRY J A, 1979. Groundwater[M]. Englewood Cliffs, NJ: Prentice-Hall. |
[13] | KAZEMI G A, LEHR J H, PERROCHET P, 2006. Groundwater Age[M]. New Jerse:Wile-Interscience, A John Wiley & Sons, Inc., Publication. |
[14] |
GONFIANTINI R, ZUPPI G M, 2003. Carbon isotope exchange rate of DIC in karst groundwater[J]. Chemical Geology, 197(1-4): 319-336.
DOI URL |
[15] | HUANG T M, PANG Z H, LI J, et al., 2017. Mapping groundwater renewability using age data in the Baiyang Alluvial Fan, NW China[J]. Ydrogeology Journal, 25(3): 743-755. |
[16] |
IWATSUKI S X, MIZUTANI Y, HAMA K, et al., 2001. Carbon-14 study of groundwater in the sedimentary rocks at the tono studysite, central Japan[J]. Applied Geochemistry, 16(7): 849-859.
DOI URL |
[17] |
JASECHKO S, PERRONE D, BEFUS K M, 2017. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination[J]. Nature Geoscience, 10(6): 425-429.
DOI URL |
[18] |
JIANG W, HU S M, LU Z T, et al., 2020. Latest development of radiokrypton dating—A tool to find and study paleo groundwater[J]. Quaternary International, 547: 166-171.
DOI URL |
[19] |
KANG S J, KIM J H, HWANG J H, et al., 2020. Seasonal contrast of particulate organic carbon (POC) characteristics in the Geum and Seomjin estuary systems (South Korea) revealed by carbon isotope (δ13C and Δ14C) analyses[J]. Water Research, 187: 116442.
DOI URL |
[20] |
KOHL D H, SHEARER G B, COMMONE R B, 1971. Fertilizer nitrogen contribution to nitrate in surface water in a corn belt watershed[J]. Science, 174(4016): 1331-1334.
DOI URL |
[21] |
KONTUL I, SVETLI I, POVINEC P P, et al., 2020. Radiocarbon in tree rings from a clean air region in Slovakia[J]. Journal of Environmental Radioactivity, 218: 106237.
DOI URL |
[22] |
KUTSCHERA W, 2013. Applications of accelerator mass spectrometry[J]. International Journal of Mass Spectrometry, 349-350: 203-218.
DOI URL |
[23] |
LAURENCE G, NICOLE B, BENOIT V, 2009. Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in avolcanic island[J]. Journal of Contaminant Hydrology, 108(3-4): 107-117.
DOI URL |
[24] |
LIBBY W F, ANDERSON E C, ARNOLD J R, 1949. Age determination by radiocarbon content: World wide assay of natural radiocarbons[J]. Science, 109(2827): 227-228.
DOI URL |
[25] |
MATTHEW J C, DONG M H, CHEN Z G, 2012. Sustainability of groundwater usage in northern China: Dependence on palaeowaters and effects on water quality, quantity and ecosystem health[J]. Hydrological Processes, 26(26): 4050-4066.
DOI URL |
[26] |
MOODY C S, 2020. A comparison of methods for the extraction of dissolved organic matter from freshwaters[J]. Water Research, 184: 116114.
DOI URL |
[27] | MOOK W G, 1976. The dissolution—exchange model for dating ground water with 14C[C]// Interpretation of Environmental Isotope and Hydrochemical Data in Ground Water Hydrology, Vienna: IAEA: 213-225. |
[28] |
MURSELI S, MIDDLESTEAD P, ST J G, et al., 2019. The preparation of water (DIC, DOC) and gas (CO2, CH4) samples for radiocarbon analysis at AEL-AMS, Ottawa, Canada[J]. Radiocarbon, 61(5): 1563-1571.
DOI URL |
[29] | MUNNICH K O, 1975. Messugendes 14C-gehaltes von hartem roundwasser[J]. Naturwisenschaften, 44: 2853-2865. |
[30] |
NAKAMURA T, MASUDA K, MILAKE F, et al., 2015. High-precision age determination of Holocene samples by radiocarbon dating with accelerator mass spectrometry at Nagoya University[J]. Quaternary International, 397: 250-257.
DOI URL |
[31] | PEARSON F J, HANSHAW B B, 1970. Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating[C]// Isotope Hydrology, Vienna: IAEA: 271-286. |
[32] |
SCHLOSSER P, KROMER B, ÖSTLUND G, et al., 1994. On the 14C and 39Ar distribution in the central arctic ocean: Implications or deep water formation[J]. Radiocarbon, 36(3): 327-344.
DOI URL |
[33] | SOKOLOV D S, 1962. Main conditions for karst development[M]. Moscow: Geological Technology Izdat: 320-323. |
[34] | SZIDAT S, 2020. 14C Research at the Laboratory for the Analysis of Radiocarbon with AMS (LARA),University of Bern[J]. Chima International Journal for Chemistry, 74(12): 1010-1014. |
[35] | TAMERS M A, 1975. Validity of radiocarbon dates on ground water[J]. Surveys in Geophysics, 2(2): 217-239. |
[36] | TURNBULL J C, MIKALOFF F S E, BRAILSFORD G W, et al., 2017. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954-2014 [J]. Atmospheric Chemistry and Physics, 17(23): 14771-14784. |
[37] | UREY H C, 1947. The thermodynamic properkies of isotopic substances[J]. Journal of the Chemical, Society (Resumed), 562-581. |
[38] |
VEHAGEN B, MAZOR E, SELLSCHOP J P, 1974. Radiocarbon and tritium evidence for direct rain recharge to groundwaters in the northern Kalahari[J]. Nature, 249: 643-644.
DOI |
[39] | VOGEL J C, 1970. Carbon-14 dating of groundwater[J]. In Isotope Hydrology, Vienna: IAEA, 225-239. |
[40] |
WALKER B D, BEAUPERE S R, GRIFFIN S, et al., 2019. UV photochemical oxidation and extraction of marine dissolved organic carbon at UC Irvine: Status, surprises, and methodological recommendations[J]. Radiocarbon, 61(5): 1603-1617.
DOI URL |
[41] |
WANG S Q, TANG C Y, SONG X F, et al., 2016. Factors contributing to nitrate contamination in a groundwater recharge area of the north China piain[J]. Hydrological Processes, 30(13): 2271-285.
DOI URL |
[42] |
XU X M, SU S E, TRUMBORE, et al., 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1): 320-329.
DOI URL |
[43] | 丙孝芳, 2004. 水文学原理[M]. 北京: 中国水利水电出版社. |
BING X F, 2004. Principles of hydrology[M]. Beijing: China Water Power Press. | |
[44] | 柴蕴栩, 2021. 定边县地下水资源评价及可持续利用研究[D]. 长春: 吉林大学. |
CAI W X, 2021. Research on the assessment and sustainable utilization of groundwater resourcesin Dingbian county[D]. Changchun: Jilin University. | |
[45] | 蔡旭梅, 冯雁飞, 2023. 应用14C测年法确定太原市东山岩溶水年龄[J]. 中国煤炭地质, 35(2): 47-52. |
CAI X M, FENG Y F, 2023. The age determination of karst water in Dongshan mountain of Taiyuan city by 14C dating method[J]. Coal Geology of China, 35(2): 47-52. | |
[46] | 陈建生, 汪集旸, 赵霞, 等, 2004. 北山修建核废物库对额济纳旗地下水资源安全运行的潜在危害[C]// 第二届全国水问题研究学术研讨会论文集. 北京: 277-284. |
CHEN J S, WANG J S, ZHAO X, et al., 2004. The potential harm to the safe operation of groundwater resources in Ejin Banner by the construction of nuclear waste bank in Beishan[C]// Proceedings of the second National Symposium on Water Research. Beijing: 277-284. | |
[47] | 陈建生, 王庆庆, 2012. 北方干早区地下水补给源问题讨论[J]. 水资源保护, 28(3): 1-8. |
CHEN J S, WANG Q Q, 2012. A discussion of ground water recharge sources in arid areas of North China[J]. Water Resources Protection, 28(3): 1-8. | |
[48] | 陈梦熊, 1998. 中国水文地质环境地质问题研究[M]. 北京: 地震出版社: 6-8. |
CHEN M X, 1998. Study on the geological problems of hydrogeology and environment in China[M]. Beijing: Earthquake Press: 6-8. | |
[49] | 陈茜茜, 陈建生, 王婷, 2014. 我国北方地下水年龄测定问题讨论[J]. 水资源保护, 30(2): 1-5, 16. |
CHEN Q Q, CHEN J S, WANG T, 2014. A discussion of groundwater dating in northern China[J]. Water Resources Protection, 30(2): 1-5, 16. | |
[50] | 陈小兵, 2021. 基于14C测年在查明马坑铁矿矿区岩溶水来源中的应用[J]. 福建冶金, 50(5): 1-3, 10. |
CHEN X B, 2021. Application of 14C Dating in Identifying the Source of Karst Water in Makeng Iron Mine[J]. Fujian Metallurgy, 50(5): 1-3, 10. | |
[51] | D·E·怀特, 沈照理, 1987. 不同起源的地下水[J]. 地质科技情报, 6(1): 78-81. |
D. E. WHITE, SHEN Z L, 1987. Groundwater of different origins[J]. Bulletin of Geological Science and Technology, 6(1): 78-81. | |
[52] | 高淑琴, 2008. 河南平原第四系地下水循环模式及其可更新能力评价[D]. 长春: 吉林大学. |
GAO S Q, 2008. Groundwater cycle pattern and rernewrability evaluation of groundwater in the quaternary aquifer in Henan plain[D]. Chuangchun: Jilin University. | |
[53] | 高旭波, 向绚丽, 侯保俊, 等, 2020. 水化学—稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 39(5): 629-636. |
GAO X B, XIANG X L, HOU B J, et al., 2020. Application of hydro—chemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 39(5): 629-636. | |
[54] | 何明, 包轶文, 苏胜勇, 2020. 小型加速器质谱系统研制及分析技术研究[J]. 原子核物理评论, 37(3): 784-790. |
HE M, BAO Y W, SU S Y, 2020. Development the Miniaturized AMS System and Its Analysis Technique[J]. Nuclear Physics Review, 37(3): 784-790. | |
[55] | 侯光才, 林学钰, 苏小四, 等, 2006. 鄂尔多斯白垩系盆地地下水系统研究[J]. 吉林大学学报(地球科学版), 36(3): 391-398. |
HOU G C, LIN X Y, SU X S, et al., 2006. Groundwater systemin ordos cretaceous artisan basin[J]. Journal of Jilin University (Earth Science Edition), 36(3): 391-398. | |
[56] | 黄伟, 梁积新, 吴宇轩, 等, 2019. 我国放射性同位素制备技术的发展[J]. 同位素, 32(3): 208-217. |
HUANG W, LIANG J X, WU Y X, et al., 2019. Development of radioisotopes preparation technology in china[J]. Journal of Isotopes, 32(3): 208-217. | |
[57] | 江露露, 隋海波, 康凤新, 等, 2023. 鲁中隆起北缘地热区岩溶热储水化学特征及形成机理[J]. 中国岩溶, 42(5): 1-23. |
JIANG L L, SUI H B, KANG F X, et al., 2023. Hydrogen chemical characteristics and formation mechanism of the karst thermal reservoir in the northern edge of the Luzhong Uplift[J]. Carsologica Sinica, 42(5): 1-23. | |
[58] | 姜山, 董克君, 何明, 2012. 超灵敏加速器质谱技术进展及应用[J]. 岩矿测试, 31(1): 7-23. |
JIANG S, DONG K J, HE M, 2012. Development and application of ultrasensitive accelerator mass spectrometry[J]. Rock and Mineral Analysis, 31(1): 7-23. | |
[59] |
姜山, 2019. 超高灵敏加速器质谱技术及应用进展[J]. 质谱学报, 40(5): 401-415.
DOI |
JIANG S, 2019. Development and application of ultrasensitive accelerator mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 40(5): 401-415.
DOI |
|
[60] | 康凤新, 史启朋, 马哲民, 等, 2023. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例[J]. 地质学报, 97(1): 221-237. |
KANG F X, SHI Q M, MQ Z M, et al., 2023. Genetic mechanism of the karst geothermal reservoir in buried uplifts of basins: A case study of Heze[J]. Acta Geologica Sinica, 97(1): 221-237. | |
[61] | 李常锁, 高帅, 殷延伟, 等, 2023. 济南四大泉群附近补给路径及补给比例研究[J]. 中国岩溶, 42(5): 875-886. |
LI C S, GAO S, YIN Y W, et al., 2023. Research on recharge paths and ratio near of springs in Jinan[J]. Carsologica Sinica, 42(5): 875-886. | |
[62] | 李文鹏, 郝爱兵, 1999. 中国西北内陆干旱盆地地下水形成演化模式及其意义[J]. 水文地质工程地质, 26(4): 28-32. |
LI W P, HAO A B, 1999. Groundwater formation and evolution model of inland arid basin in northwest China and its significance[J]. Hydrogeology & Engineering Geology, 26(4): 28-32. | |
[63] | 李小盼, 2017. 北京西山岩溶水系统的循环特征和可更新能力研究[D]. 北京: 中国地质大学(北京). |
LI X P, 2017. A dissertation submitted to China university of geosciences for master degree[D]. Beijing: China University of Petroleum (Beijing). | |
[64] | 李雨新, 1984. 关于地球上水的起源与地下水的成因问题[J]. 长安大学学报(地球科学版) (2): 80-87. |
LI X Y, 1984. About the origin of water on the earth and the cause of groundwater[J]. Journal of Earth Sciences and Environment (2): 80-87. | |
[65] | 李忠媛, 2017. 地下水研究中地下水年龄的应用分析[J]. 黑龙江水利科技, 45(1): 111-114. |
LI Z Y, 2017. Application and analysis of groundwater age in groundwater study[J]. Heilongjiang Hydraulic Science and Technology, 45(1): 111-114. | |
[66] | 梁永平, 申豪勇, 高旭波, 2022. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 41(5): 199-219. |
LIANG Y P, SHEN H Y, GAO X B, 2022. Review of research progress of karst groundwater in northern China[J]. Bulletin of Geological Science and Technology, 41(5): 199-219. | |
[67] | 刘金荣, 梁耀成, 2003. 桂林岩溶地下水14C年龄测定结果及分析[J]. 中国岩溶, 22(4): 267-270. |
LIU J R, LIANG Y C, 2003. Results and analysis to the 14C dating of karst grounddwater in GuiLin[J]. Carsologica Sinica, 22(4): 267-270. | |
[68] | 刘治政, 李双, 刘柏含, 等, 2023. 淄博市刘征水源地西张井群岩溶地下水硫酸盐溯源分析[J]. 中国岩溶, 42(5): 1074-1084. |
LIU Z Z, LI S, LIU B H, et al., 2023. Traceability analysis of groundwater exceedance index of Xizhang Well Group in Liuzheng water source of Zibo City[J]. Carsologica Sinica, 42(5): 1074-1084. | |
[69] | 罗兰, 2008. 我国地下水污染现状与防治对策研究[J]. 中国地质大学学报(社会科学), 8(2): 72-75. |
LUO L, 2008. Research on groundwater pollution and its Prevention control Policy in China[J]. Journal of China University of Geosciences (Social Sciences Edition), 8(2): 72-75. | |
[70] | 罗玉岚, 刘磊, 李腾, 2022. 基于随机森林的岩溶地下水污染风险评价模型的应用[J]. 中国水运(下半月), 22(2): 29-31. |
LUO Y L, LIU L, LI T, 2020. Application of karst groundwater pollution risk assessment model based on random forest[J]. China Water Transport, 22(2): 29-31. | |
[71] | 马宝强, 王潇, 汤超, 等, 2021. 同位素技术在地下水研究中的主要应用[J]. 环境工程技术学报, 11(5): 919-926. |
MA B Q, WANG X, TANG C, et al., 2021. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology, 11(5): 919-926. | |
[72] | 马传明, 刘存富, 周爱国, 2010. 同位素水文学新技术新方法[M]. 武汉: 中国地质大学出版社. |
MA C M, LIU C F, ZHOU A G, 2010. New techniques and methods of isotope hydrology[M]. Wuhan: China University of Geosciences Press. | |
[73] | 孟莉萍, 保莉, 杨海兰, 等, 2017. 水中14C的样品制备与分析方法研究[J]. 环境科学与管理, 42(8): 139-142. |
MENG L P, BAO L, YANG H L, et al., 2017. Preparation and analysis of radiocarbon in water sample[J]. Environmental Science and Management, 42(8): 139-142. | |
[74] | 孟令华, 2023. 基于水化学和氢氧同位素的泰安城区岩溶地下水补给来源及演化过程[J/OL]. 环境科学: 1-13 [2023-08-31]. DOI: 10.13227/j.hjkx.202305012. |
MENG L H, 2023. Recharge source and evolution process of karst groundwater in Tai’an urban area based on hydrochemistry and hydrogen and oxygen isotopes[J/OL]. Environmental Science: 1-13 [2023-08-31]. DOI: 10.13227/j.hjkx.202305012. | |
[75] | 倪鹏程, 李名升, 李宗超, 等, 2023. 国家地下水环境质量考核监测体系构建与应用[J]. 中国环境监测, 39(4): 1-14. |
NI P C, LI M S, LI Z C, et al., 2023. Construction and Application of National Groundwater Environmental Quality Assessment and Monitoring Technology System[J]. Environmental Monitoring in China, 39(4): 1-14. | |
[76] | 彭凯, 刘文, 魏善明, 等, 2020. 基于水化学、同位素特征的济南岩溶地下水补给来源研究[J]. 中国岩溶, 39(5): 650-657. |
PENG K, LIU W, WEI S M, et al., 2020. Study on the recharge source of karst groundwater in Jinan city based on hydrogeochemical and isotopic characteristics[J]. Carsologica Sinica, 39(5): 650-657. | |
[77] | 亓明丽, 李昭梅, 唐俊森, 等. 2021. AMS-14C样品制备系统的研制及其性能研究[J]. 同位素, 34(3): 273-281. |
QI M L, LI S M, TANG J S, et al., 2022. Development of a Novel AMS-14C Sample Preparation System[J]. Journal of Isotopes, 34(3): 273-281. | |
[78] | 任静, 李娟, 席北斗, 等, 2022. 我国地下水污染防治现状与对策研究[J]. 中国工程科学, 24(5): 161-168. |
REN J, LI J, XI B D, et al., 2022. Groundwater pollution prevention and control in China: Current status and countermeasures[J]. Strategic Study of CAE, 24(5): 161-168.
DOI URL |
|
[79] | 宋小波, 蔡新, 杨杰, 2013. 基于改进 AHP 法的水闸安全性模糊综合评价[J]. 水电能源科学, 31(2): 174-176, 137. |
SONG X B, CAI X, YANG J, 2013. Contrast field test and numerical simulation of dredger fill on vacuum preloading with and without sand cushion[J]. Water Resources and Power, 31(2): 174-176, 137. | |
[80] | 苏东, 龚绪龙, 杨磊, 等, 2023. 基于同位素技术的江苏常州市地下水可更新能力研究[J/OL]. 中国地质, 1-14. [2023-08-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20230508.1402.006.html. |
SU D, GONG X L, YANG L, et al., 2023. Renewability of groundwater in Changzhou, Jiangsu Province: Based on isotopic technology[J/OL]. Geology in China, 1-14. [2023-08-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20230508.1402.006.html. | |
[81] | 苏小四, 2002. 同位素技术在黄河流域典型地区地下水可更新能力研究中的应用——以银川平原和包头平原为例[D]. 长春: 吉林大学. |
SU X S, 2002. Application of isotope technology in the study of groundwater renewability in typical areas of Yellow River Basin: A case study of Yinchuan Plain and Baotou Plain[D]. Changchun: Jilin University. | |
[82] | 谭小璇, 甘婷婷, 周蓉卉, 等, 2023. 基于藻类荧光动力学的水体放射性核素快速监测方法研究[J]. 光学学报, 44(6): 0601009. |
TAN X X, GAN T T, ZHOU R H, et al., 2023. Study on rapid monitoring method of radionuclide in water based on algae fluorescence kinetics[J]. Acta Optica Sinica, 44(6): 0601009.
DOI URL |
|
[83] | 唐续尹, 杨海全, 余伟, 等, 2022. 放射性碳同位素在地表水体有机碳来源示踪中的研究进展[J]. 地球与环境, 50(1): 148-158. |
TANG X Y, YANG H Q, YU W, et al., 2022. Research Progress of Radiocarbon Isotope in Tracing the Source of Organic Carbon in Surface Water[J]. Earth and Environment, 50(1): 148-158. | |
[84] | 田婷婷, 吴中海, 张克旗, 等, 2013. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J]. 地质力学学报, 19(3): 243-266. |
TIAN T T, WU Z H, ZHANG K Q, et al., 2013. Overview of quaternary dating methods and their application in neotectonice and active tectonics research[J]. Journal of Geomechanics, 19(3): 243-266. | |
[85] |
王贵玲, 刘彦广, 朱喜, 等, 2020. 中国地热资源现状及发展趋势[J]. 地学前缘, 27(1): 1-9.
DOI |
WANG G L, LIU Y G, ZHU X, et al., 2020. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 27(1): 1-9.
DOI |
|
[86] | 王恒纯, 1991. 同位素水文地质概论[M]. 北京: 地质出版社. |
WANG H C, 1991. Introduction to isotope hydrogeology[M]. Beijing: Geological Publishing House. | |
[87] | 王立波, 任伟刚, 白文军, 等, 2022. 陕西安康月河盆地恒口地热井地热水化学及同位素分析[J]. 陕西地质, 40(2): 56-58. |
WANG L B, REN W G, BAI W J, et al., 2022. Geochemistry and Isotope analysis of thermal water from geothermal wells in Hengkou of Yuehe Basin, Ankang, Shaanxi province[J]. Geology of Shaanxi, 40(2): 56-58. | |
[88] | 王世杰, 刘再华, 倪健, 等, 2017. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 45(1): 2-9. |
WANG S J, LIU Z H, NI J, et al. 2017. A Review of research progress and future prospective of carbon cycle in karst area of south China[J]. Earth and Environment, 45(1): 2-9. | |
[89] | 王旭东, 韩鹏飞, 张锁, 等, 2023. 基于校正的遥感数据方法估算地下水补给量: 以鄂尔多斯盆地台格庙矿区为例[J/OL]. 现代地质, 1-12 [2023-12-12]. https://doi.org/10.19657/j.geoscience.2023.1000-8527. 046. |
WANG X D, HAN P F, ZHANG S, et al., 2023. Estimation of groundwater recharge based on corrected remote sensing data:a case study of Taigemiao mining area in the Ordos basin[J/OL]. Geoscience, 1-12 [2023-12-12]. https://doi.org/10.19657/j.geoscience. 2023.1000-8527.046. | |
[90] | 王宗礼, 何建华, 2014. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术, 50(1): 6-8. |
WANG Z L, HE J H, 2014. Main methods and progress of groundwater age measurement[J]. Gansu Water Resources and Hydropower Technology, 50(1): 6-8. | |
[91] | 徐丽丽, 束龙仓, 李伟, 等, 2023. 2000-2020年中国地下水开采时空演变特征[J]. 水资源保护, 39(4): 79-85, 93. |
XU L L, SHU L C, LI W, et al., 2023. Spatial and temporal evolution characteristics of groundwater mining in China from 2000 to 2020[J]. Water Resources Protectio, 39(4): 79-85, 93. | |
[92] |
徐秋娥, 角媛梅, 张兆年, 2023. 地下水年龄的概念及其测定方法研究进展[J]. 地球科学进展, 38(6): 594-609.
DOI |
XU Q E, JIAO Y M, ZHUANG Z N, 2023. Definitions of groundwater age and dating methods: Progresses and prospects[J]. Advances in Earth Science, 38(6): 594-609.
DOI |
|
[93] | 杨会, 蓝高勇, 唐伟, 等, 2018. 常规放射性14C测年金属系统装置研发和优化[J]. 中国岩溶, 37(1): 154-158. |
YANG H, LAN G Y, TANG W, et al., 2018. Research and optimization of metal system device for conventional radioactive 14C dating[J]. Carsologica Sinica, 37(1): 154-158. | |
[94] | 杨旭冉, 庞义俊, 何明, 等, 2015. 用于AMS测量的14C样品制备方法[J]. 同位素, 28(2): 65-68. |
YANG X R, PANG Y J, HE M, et al., 2015. Method of 14C sample preparation for AMS measurement[J]. Journal of Isotopes, 28(2): 65-68. | |
[95] | 尹立河, 2011. 基于多种方法的地下水补给研究——以鄂尔多斯高原为例[D]. 北京: 中国地质大学(北京). |
YI L H, 2011. Estiration of groundwater recharge using multiple approaches: A case study in the Ordos Plateau[D]. Beijing: China University of Geosciences (Beijing). | |
[96] | 张会乔, 张若煊, 姚明, 2023. 高纯锗γ能谱法测量伴生放射性矿稀土酸熔渣-(238)U方法研究[J]. 江西化工, 39(2): 44-47+50. |
ZHANG Q H, ZHANG R X, YAO M, 2023. HPGe γ study on the method of measuring 238U rare earth acid slag of associated radioactive ore by energy spectru[J]. Jiangxi Chemical Industry, 39(2): 44-47+50. | |
[97] | 张春来, 黄芬, 蒲俊兵, 等, 2021. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 8(4): 40-52. |
ZHANG C L, HUANG F, PU J B, et al., 2021. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 8(4): 40-52. | |
[98] | 张慧, 王小明, 庞义俊, 等, 2017. 基于加速器质谱测量的14C呼气试验样品制备方法研究[J]. 同位素, 30(2): 89-94. |
ZHANG H, WANG X M, PANG Y J, et al., 2017. Samples preparation of breath test 14C tracer for accelerator mass spectrometry[J]. Journal of Isotopes, 30(2): 89-94. | |
[99] | 张英, 2020. 联用地下水年龄和稳定同位素解析硝酸盐污染源的演变[D]. 北京: 中国地质大学(北京). |
ZHANG Y, 2020. Combined use of groundwater dating and stable isotopes to resolve the changes of nitrate sources[D]. Beijing: China University of Geosciences (Beijing). | |
[100] | 章程, 肖琼孙平安, 等, 2022. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 41(5): 190-198. |
ZHANG C, XIAO Q, SUN P A, et al., 2022. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 41(5): 190-198. | |
[101] | 翟远征, 王金生, 滕彦国, 等, 2013. 地下水更新能力评价指标问题刍议——更新周期和补给速率的适用性[J]. 水科学进展, 24(1): 56-61. |
ZHAI Y Z, WANG J S, TENG Y G, et al., 2013. Humble opinion on assessment indices for groundwater renewability: Applicability of renewal period and recharge rate[J]. Advances in Water Science, 24(1): 56-61. | |
[102] | 翟远征, 王金生, 左锐, 等, 2011. 地下水年龄在地下水研究中的应用研究进展[J]. 地球与环境, 39(1): 113-120. |
ZHAI Y Z, WANG J S, ZUO R, et al., 2011. Progress in applications of groundwater ages in groundwater research[J]. Earth and Environment, 39(1): 113-120. | |
[103] | 赵思远, 贾仰, 唐颖栋, 等, 2022. 基于稳定同位素的黄土塬区地下水补给规律研究[J]. 中国农村水利水电 (8): 63-69, 77. |
ZHAO S Y, JIA Y W, TANG Y D, et al., 2022. Research on the groundwater recharge in loess plateau based on stable isotopes[J]. China Rural Water and Hydropower (8): 63-69, 77. | |
[104] | 赵雪琰, 徐杰, 董志超, 等, 2022. 放射性碳同位素技术在碳质气溶胶源解析中的应用研究进展[J]. 地球科学与环境学报, 44(4): 685-698. |
ZHAO X Y, XU Z J, DONG Z C, et al., 2022. Review on application of radiocarbon isotope technique in source apportionment of carbonaceous aerosols[J]. Journal of Earth Sciences and Environment, 44(4): 685-698. | |
[105] | 邹霜, 2021. 基于水化学和同位素的南太行山岩溶地下水硝酸盐来源分析[D]. 焦作: 河南理工大学. |
ZHOU S, 2021. Nitrate source analysis of karst groundwater in Southern Taihang Mountain based on Hydrochemistry and Isotopes[D]. Jiaozuo: Institutes of Technology of Henan. | |
[106] | 周迅, 姜月华, 2007. 氮、氧同位素在地下水硝酸盐污染研究中的应用[J]. 地球学报, 28(4): 389-395. |
ZHOU X, JIANG Y H, 2007. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contam ination[J]. Acta Geoscientica Sinica, 28(4): 389-395. |
[1] | WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China [J]. Ecology and Environment, 2023, 32(8): 1365-1375. |
[2] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[3] | CHEN Bufeng, XIAO Yihua, WU Qiaohua. Difference Characteristics of PAHs Mass Load in Rainstorm and Hard Surface Runoff between the Urban and the Suburb Forest Area in Guangzhou [J]. Ecology and Environment, 2021, 30(9): 1879-1887. |
[4] | CHEN Bufeng, WANG Xinyi, XIAO Yihua, WU Qiaohua. Impact on Rainstorm Surface Runoff and PAHs as well as TOC for the Forest and Different Lower Cushion Surface in Guangzhou, China [J]. Ecology and Environment, 2021, 30(9): 1865-1878. |
[5] | ZHOU Dan, ZHANG Juan, LUO Jing, GUO Guang, LI Baohua. Analysis on the Causes of Qinghai Lake Water Level Changes and Prediction of Its Future Trends [J]. Ecology and Environment, 2021, 30(7): 1482-1491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn