Ecology and Environment ›› 2024, Vol. 33 ›› Issue (8): 1174-1181.DOI: 10.16258/j.cnki.1674-5906.2024.08.002
• Research Article [Ecology] • Previous Articles Next Articles
PANG Bo(), HAI Xiang, ZHANG Haifang, ZHANG Yanjun, WANG Hui, LIU Hongmei*(
), YANG Dianlin*(
)
Received:
2024-05-06
Online:
2024-08-18
Published:
2024-09-25
庞波(), 海香, 张海芳, 张艳军, 王慧, 刘红梅*(
), 杨殿林*(
)
通讯作者:
刘红梅。E-mail: 作者简介:
庞波(1997年生),女,硕士研究生,主要从事草地生态学和生物多样性方面的研究。E-mail: pbzxhdsgb@163.com
基金资助:
CLC Number:
PANG Bo, HAI Xiang, ZHANG Haifang, ZHANG Yanjun, WANG Hui, LIU Hongmei, YANG Dianlin. Effects of Spread of Veratrum nigrum on Vegetation Characteristics and Soil Physicochemical Properties in Mountain Meadow Steppe[J]. Ecology and Environment, 2024, 33(8): 1174-1181.
庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.08.002
物种 | 不同处理的植物地上生物量/(g∙m−2) | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
藜芦Veratrum nigrum | 0.00±0.00d | 67.8±10.7c | 110±2.80b | 319±37.0a |
日荫菅Carex pediformis | 80.7±15.4a | 27.2±11.2b | 33.7±6.52b | 41.8±7.29b |
羊草Leymus chinensis | 48.5±14.3bc | 60.1±11.9b | 33.0±11.3c | 80.6±14.3a |
二裂叶委陵菜Po-tentilla bifurca | 23.0±6.67b | 47.2±10.2a | 30.6±0.89b | 43.2±2.74a |
地榆Sanguisorba officinalis | 23.3±5.78a | 26.6±8.37a | 21.1±6.43a | 28.1±8.28a |
黄花菜Achnatherum sibiricum | 25.8±4.58a | 16.0±5.11b | 18.2±4.44b | 4.88±1.25c |
羽茅Achnatherum sibiricum | 25.8±7.77a | 30.8±8.87a | 10.3±4.22b | 16.1±2.54b |
早熟禾Poa attenuta | 23.6±8.48a | 10.8±5.50b | 2.16±0.98c | 1.96±0.71c |
唐松草Thalictrum aquilegiifolium | 22.3±1.87a | 12.6±6.07b | 11.2±3.95b | 16.0±3.29b |
蓬子菜Galium verum | 14.5±1.97b | 13.5±3.26b | 12.5±1.14b | 22.5±6.60a |
其他植物 | 57.4±6.32a | 51.7±6.15a | 24.3±9.04b | 30.5±4.55b |
总生物量 | 345±22.4b | 364±35.2b | 306±11.7c | 604±32.8a |
Table 1 Aboveground biomass of plant community species
物种 | 不同处理的植物地上生物量/(g∙m−2) | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
藜芦Veratrum nigrum | 0.00±0.00d | 67.8±10.7c | 110±2.80b | 319±37.0a |
日荫菅Carex pediformis | 80.7±15.4a | 27.2±11.2b | 33.7±6.52b | 41.8±7.29b |
羊草Leymus chinensis | 48.5±14.3bc | 60.1±11.9b | 33.0±11.3c | 80.6±14.3a |
二裂叶委陵菜Po-tentilla bifurca | 23.0±6.67b | 47.2±10.2a | 30.6±0.89b | 43.2±2.74a |
地榆Sanguisorba officinalis | 23.3±5.78a | 26.6±8.37a | 21.1±6.43a | 28.1±8.28a |
黄花菜Achnatherum sibiricum | 25.8±4.58a | 16.0±5.11b | 18.2±4.44b | 4.88±1.25c |
羽茅Achnatherum sibiricum | 25.8±7.77a | 30.8±8.87a | 10.3±4.22b | 16.1±2.54b |
早熟禾Poa attenuta | 23.6±8.48a | 10.8±5.50b | 2.16±0.98c | 1.96±0.71c |
唐松草Thalictrum aquilegiifolium | 22.3±1.87a | 12.6±6.07b | 11.2±3.95b | 16.0±3.29b |
蓬子菜Galium verum | 14.5±1.97b | 13.5±3.26b | 12.5±1.14b | 22.5±6.60a |
其他植物 | 57.4±6.32a | 51.7±6.15a | 24.3±9.04b | 30.5±4.55b |
总生物量 | 345±22.4b | 364±35.2b | 306±11.7c | 604±32.8a |
植被特性 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
物种丰富度 | 24.3±1.53a | 20.00±1.73b | 18.00±1.00b | 16.3±2.52b |
Shannon-Wiener指数 | 2.49±0.08a | 2.45±0.14a | 2.30±0.11a | 2.02±0.08b |
Simpson指数 | 0.20±0.01a | 0.12±0.03c | 0.15±0.02b | 0.13±0.01bc |
Pielou指数 | 0.78±0.02a | 0.82±0.07a | 0.79±0.03a | 0.71±0.03a |
Table 2 Community species richness and diversity indices
植被特性 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
物种丰富度 | 24.3±1.53a | 20.00±1.73b | 18.00±1.00b | 16.3±2.52b |
Shannon-Wiener指数 | 2.49±0.08a | 2.45±0.14a | 2.30±0.11a | 2.02±0.08b |
Simpson指数 | 0.20±0.01a | 0.12±0.03c | 0.15±0.02b | 0.13±0.01bc |
Pielou指数 | 0.78±0.02a | 0.82±0.07a | 0.79±0.03a | 0.71±0.03a |
土壤理化 性质 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
pH | 6.17±0.03a | 6.14±0.02a | 6.11±0.04b | 5.94±0.02c |
w(有机质)/ (g·kg−1) | 50.86± 9.50b | 63.17± 5.26a | 62.15± 6.58a | 45.03± 3.68b |
w(铵态氮)/ (mg·kg−1) | 12.04± 0.97c | 17.45± 2.11b | 22.89± 5.01a | 21.02± 3.96a |
w(硝态氮)/ (mg·kg−1) | 13.51± 1.47c | 17.82± 0.25b | 17.88± 0.405b | 19.81± 0.71a |
w(速效磷)/ (mg·kg−1) | 11.39± 0.92c | 14.96± 1.64b | 15.08± 2.98b | 18.31± 0.68a |
w(全氮)/(g·kg−1) | 4.56±0.41b | 5.77±0.32a | 6.59±1.31a | 6.02±0.79a |
w(全磷)/(g·kg−1) | 0.61±0.07b | 0.62±0.03b | 0.67±0.03a | 0.68±0.02a |
w(速效钾)/ (mg·kg−1) | 408.27± 24.77b | 604.17± 20.79a | 610.43± 30.64a | 610.33± 24.97a |
Table 3 Soil physicochemical properties
土壤理化 性质 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
pH | 6.17±0.03a | 6.14±0.02a | 6.11±0.04b | 5.94±0.02c |
w(有机质)/ (g·kg−1) | 50.86± 9.50b | 63.17± 5.26a | 62.15± 6.58a | 45.03± 3.68b |
w(铵态氮)/ (mg·kg−1) | 12.04± 0.97c | 17.45± 2.11b | 22.89± 5.01a | 21.02± 3.96a |
w(硝态氮)/ (mg·kg−1) | 13.51± 1.47c | 17.82± 0.25b | 17.88± 0.405b | 19.81± 0.71a |
w(速效磷)/ (mg·kg−1) | 11.39± 0.92c | 14.96± 1.64b | 15.08± 2.98b | 18.31± 0.68a |
w(全氮)/(g·kg−1) | 4.56±0.41b | 5.77±0.32a | 6.59±1.31a | 6.02±0.79a |
w(全磷)/(g·kg−1) | 0.61±0.07b | 0.62±0.03b | 0.67±0.03a | 0.68±0.02a |
w(速效钾)/ (mg·kg−1) | 408.27± 24.77b | 604.17± 20.79a | 610.43± 30.64a | 610.33± 24.97a |
[1] |
AHMED A A, GYPSER S, FREESE D, et al., 2020. Molecular level picture of the interplay between pH and phosphate binding at the goethite-water interface[J]. Physical Chemistry Chemical Physics, 22(45): 26509-26524.
DOI PMID |
[2] |
AMTMANN A, TROUFFLARD S, ARMENGAUD P, 2008. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 133(4): 682-691.
DOI PMID |
[3] | ARAYA T, MLAHLWA A V, ELBASIT M A M A, et al., 2022. The impact of Tamarix invasion on the soil physicochemical properties[J]. Scientific Reports, 12(1): 5750. |
[4] | BAI J K, CHEN R, MEN X X, et al., 2023. Divergent linkages of soil phosphorus fractions to edaphic properties following afforestation in the riparian zone of the upper Yangtze River, China[J]. Chemosphere, 313: 137452. |
[5] | CHENG J N, JIN H, ZHANG J L, et al., 2022. Effects of allelochemicals, soil enzyme activities, and environmental factors on rhizosphere soil microbial community of Stellera chamaejasme L. along a growth-coverage gradient[J]. Microorganisms, 10(1): 158. |
[6] | DHILLON J, TORRES G, DRIVER E, et al., 2017. World phosphorus use efficiency in cereal crops[J]. Agronomy Journal, 109(4): 1670-1677. |
[7] | HU Y F, NACUN B, 2018. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990-2015[J]. Sustainability, 10(11): 4048. |
[8] | JIN H, YANG X Y, LIU R T, et al., 2018. Bacterial community structure associated with the rhizosphere soils and roots of Stellera chamaejasme L. along a Tibetan elevation gradient[J]. Annals of Microbiology, 68(5): 273-286. |
[9] | LOLLATO R P, FIGUEIREDO B M, DHILLON J S, et al., 2019. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments[J]. Field Crops Research, 236: 42-57. |
[10] | MARIOTTE P, SPOTSWOOD E N, FARRER E C, et al., 2017. Positive litter feedbacks of an introduced species reduce native diversity and promote invasion in Californian grasslands[J]. Applied Vegetation Science, 20(1): 28-39. |
[11] | MEHARG A, MARSCHNER P, 2012. Marschner's mineral nutrition of higher plants[J]. Experimental Agriculture, 48(2): 305. |
[12] |
RADUJKOVIĆ D, VERBRUGGEN E, SEABLOOM E W, et al., 2021. Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?[J]. Ecology Letters, 24(12): 2713-2725.
DOI PMID |
[13] | RAHMAN N A, LARBI A, OPOKU A, et al., 2019. Crop-livestock interaction effect on soil quality and maize yield in Northern Ghana[J]. Agronomy Journal, 111(2): 907-916. |
[14] | REN B H, MENG M, YU J X, et al., 2023. Invasion by Cenchrus spinifex changes the soil microbial community structure in a sandy grassland ecosystem[J]. Heliyon, 9(11): e20860. |
[15] | TORRES N, HERRERA I, FAJARDO L, et al., 2021. Meta-analysis of the impact of plant invasions on soil microbial communities[J]. BMC Ecology and Evolution, 21(1): 172. |
[16] | WANG C W, LIU Z K, YU W Y, et al., 2022. Grassland degradation has stronger effects on soil fungal community than bacterial community across the semi-arid region of Northern China[J]. Plants, 11(24): 3488. |
[17] | WANG S C, YUAN X Q, LI T, et al., 2024. Changes in soil microbe-mediated carbon, nitrogen and phosphorus cycling during spontaneous succession in abandoned Pb-Zn mining areas[J]. Science of The Total Environment, 920: 171018. |
[18] | XIE H T, KNAPP L S P, YU M K, et al., 2023. Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China[J]. Plant and Soil, 484(1): 65-77. |
[19] | YANG K X, YANG Y H, WU X H, et al., 2024. Allelopathic potential and chemical composition of essential oil from the invasive plant Acmella radicans[J]. Agronomy, 14(2): 342. |
[20] | ZHANG H, YANG X T, YIN Z, et al., 2024. Invasion of exotic Spartina alterniflora alters the size, availability, and stability of the soil phosphorus pool in the coastal wetlands of eastern China[J]. CATENA, 239: 107909. |
[21] | 鲍士旦, 2001. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2001. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press. | |
[22] | 高雅芳, 2019. 长白山西坡苔原带尖被藜芦关键物候期及其与环境要素关系[D]. 长春: 东北师范大学. |
GAO Y F, 2019. The key phenophases of Veratrum oxysepalum and relationship with environmental factors from tundra in the western slope of the Changbai Mountains[D]. Changchun: Northeast Normal University. | |
[23] | 顾令爽, 杨小林, 李义玲, 等, 2018. 藜芦属植物 (Veratrum) 的生理生态学研究进展[J]. 中国野生植物资源, 37(6): 53-56, 72. |
GU L S, YANG X L, LI Y L, et al., 2018. Advances in research of ecophysiological for Veratrum[J]. Chinese Wild Plant Resources, 37(6): 53-56, 72. | |
[24] | 何兴东, 高玉葆, 刘惠芬, 2004. 重要值的改进及其在羊草群落分类中的应用[J]. 植物研究, 24(4): 466-472. |
HE X D, GANG Y B, LIU H F, 2004. Amending of importance value and its application on classification of Leymus chinensis communities[J]. Bulletin of Botanical Research, 24(4): 466-472. | |
[25] | 胡睿, 2020. 藜芦入侵下长白山典型苔原生态系统的变化过程研究[D]. 长春: 东北师范大学. |
HU R, 2020. Study on the changing process of typical tundra ecosystem under the invasion of Veratrum nigrum [D]. Changchun: Northeast Normal University. | |
[26] | 胡奕, 2023. 三种一年生菊科入侵植物丰富度和多度对生态系统多功能性的影响[D]. 济南: 山东大学. |
HU Y, 2023. Effects of richness and abundance of three annual Asteraceae invasive plants on ecosystem multifunctionality[D]. Ji’nan: Shandong University. | |
[27] | 李海宁, 柳妍妍, 公延明, 等, 2023. 甘肃马先蒿入侵对巴音布鲁克高寒草原凋落物分解的影响[J]. 草原与草坪, 43(1): 1-11. |
LI H N, LIU Y Y, GONG Y M, et al., 2023. Effects of Pedicularis kansuensis invasion on litter decomposition in Bayanbulak alpine steppe[J]. Grassland and Turf, 43(1): 1-11. | |
[28] | 孟昀昊, 2022. 美洲商陆入侵的植物-土壤反馈机制探究[D]. 烟台: 鲁东大学. |
MENG Y H, 2022. The exploration on plant-soil feedback mechanism of Phytolacca americana L. invasion[D]. Yantai: Ludong University. | |
[29] |
牛琼梅, 单贵莲, 罗钦, 等, 2023. 毒害草入侵扩散对滇西北亚高山草甸土壤微生物多样性的影响[J]. 草地学报, 31(7): 1996-2004.
DOI |
NIU Q M, SHAN G L, LUO Q, et al., 2023. Effect of Invasion and diffusion of poisonous weeds on soil microbial diversity in subalpine meadow in northwest Yunnan[J]. Acta Agrestia Sinica, 31(7): 1996-2004. | |
[30] | 施宇森, 王杉杉, 方伟, 等, 2024. 基于Meta分析研究毛竹入侵致土壤pH提升及养分和微生物群落结构的变化[J]. 土壤学报, 61(3): 862-877. |
SHI Y S, WANG S S, FANG W, et al., 2024. Bamboo invades surrounding forest increased soil pH, changed soil chemical nutrient and microbial community: A meta-analysis[J]. Acta Pedologica Sinica, 61(3): 862-877. | |
[31] | 孙天舒, 2013. 草地瑞香狼毒种群扩散对土壤养分有效性的影响[D]. 沈阳: 东北大学. |
SUN T S, 2013. The effects of dispersion of Stellera chamaejasme L. population on soil nutrient availability of grassland[D]. Shenyang: Northeastern University. | |
[32] | 王福山, 何永涛, 石培礼, 等, 2016. 狼毒对西藏高原高寒草甸退化的指示作用[J]. 应用与环境生物学报, 22(4): 567-572. |
WANG F S, HE Y T, SHI P L, et al., 2016. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau[J]. Chinese Journal of Applied and Environmental Biology, 22(4): 567-572. | |
[33] | 王宏生, 王玉琴, 宋梅玲, 等, 2024. 黄帚橐吾不同密度斑块植物、土壤和微生物碳氮磷生态化学计量特征[J]. 生态学报, 44(10): 4297-4307. |
WANG H S, WANG Y Q, SONG M L, et al., 2024. Carbon, nitrogen and phosphorus stoichiometric characteristics of plants, soils and microbial biomass in patches with different densities of Ligularia virgaurea[J]. Acta Ecologica Sinica, 44(10): 4297-4307. | |
[34] | 王慧赟, 2020. 藜芦入侵对牛皮杜鹃叶片性状与光合特性的影响过程研究[D]. 长春: 东北师范大学. |
WANG H Y, 2020. Study on impacting process of Veratrum oxysepalum invasion on leaf characteristics and photosynthetic characteristics of Rhododendron aureum[D]. Changchun: Northeast Normal University. | |
[35] | 吴虎山, 宝柱, 2006. 呼伦贝尔天然草原退化原因及治理对策[J]. 草原与草业 (3): 26-27. |
WU H S, BAO Z, 2006. Causes of natural grassland degradation in Hulunbuir and countermeasures for its management[J]. Grassland and Prataculture (3): 26-27. | |
[36] | 杨琳, 2019. 新疆阿勒泰地区天然草地毒害草种群分布与危害及防控调查[D]. 咸阳: 西北农林科技大学. |
YANG L, 2019. Investigation on population distribution, harm and control of poisonous grass on natural grassland in Altay region of Xinjiang[D]. Xianyang: Northwest A & F University. | |
[37] | 尤延飞, 马青成, 郭亚洲, 等, 2018. 内蒙古天然草地毒草危害状况与防控对策[J]. 动物医学进展, 39(4): 105-110. |
YOU Y F, MA Q C, GUO Y Z, et al., 2018. Hazard status and control countermeasures of poisonous weeds in natural grasslands of Inner Mongolia[J]. Progress in Veterinary Medicine, 39(4): 105-110. | |
[38] |
赵榕江, 陈焘, 董丽佳, 等, 2023. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 47(10): 1333-1355.
DOI |
ZHAO R J, CHEN T, DONG L J, et al., 2023. Progress of plant-soil feedback in ecology studies[J]. Chinese Journal of Plant Ecology, 47(10): 1333-1355. | |
[39] | 郑文贤, 李世雄, 赵文, 等, 2024. 高寒草地土壤真菌群落结构对春季休牧的响应[J]. 生态学杂志, 43(6): 1703-1711. |
ZHENG W X, LI S X, ZHAO W, et al., 2024. Responses of soil fungal community structure to spring grazing exclusion in alpine grassland[J]. Chinese Journal of Ecology, 43(6): 1703-1711.
DOI |
|
[40] | 朱文琰, 杨畅, 许明圆, 等, 2024. 不同龄级瑞香狼毒影响微尺度高寒草甸群落结构[J]. 中国草地学报, 46(2): 83-91. |
ZHU W Y, YANG C, XU M Y, et al., 2024. Effects of Stellera chamaejasme development on community structure of micro-scale topography in alpine meadow[J]. Chinese Journal of Grassland, 46(2): 83-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn