Ecology and Environment ›› 2023, Vol. 32 ›› Issue (9): 1615-1622.DOI: 10.16258/j.cnki.1674-5906.2023.09.008
• Research Articles • Previous Articles Next Articles
LIANG Xin1(), HAN Yafeng1,2, ZHENG Ke1, WANG Xugang1,3,*(
), CHEN Zhihuai1, DU Juan4
Received:
2023-04-11
Online:
2023-09-18
Published:
2023-12-11
梁鑫1(), 韩亚峰1,2, 郑柯1, 王旭刚1,3,*(
), 陈志怀1, 杜鹃4
通讯作者:
*王旭刚。E-mail: 作者简介:
梁鑫(1999年生),男,硕士研究生,研究方向为土壤化学。E-mail: haustlx@163.com
基金资助:
CLC Number:
LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field[J]. Ecology and Environment, 2023, 32(9): 1615-1622.
梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.09.008
处理 | 还原潜势/ (mg g−1) | 最大还原速率/ (mgg−1d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 6.26±0.11e | 0.57±0.09a | 0.36±0.06a | 0.947 | <0.01 |
FA | 7.15±0.20d | 0.71±0.13a | 0.41±0.09a | 0.930 | <0.01 |
FB | 7.78±0.19c | 0.70±0.12a | 0.36±0.07a | 0.934 | <0.01 |
FC | 9.62±0.42b | 0.63±0.12a | 0.27±0.06a | 0.917 | <0.01 |
FD | 10.79±0.56a | 0.75±0.13a | 0.27±0.05a | 0.934 | <0.01 |
Table 1 Key parameters of iron reduction in constant temperature culture
处理 | 还原潜势/ (mg g−1) | 最大还原速率/ (mgg−1d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 6.26±0.11e | 0.57±0.09a | 0.36±0.06a | 0.947 | <0.01 |
FA | 7.15±0.20d | 0.71±0.13a | 0.41±0.09a | 0.930 | <0.01 |
FB | 7.78±0.19c | 0.70±0.12a | 0.36±0.07a | 0.934 | <0.01 |
FC | 9.62±0.42b | 0.63±0.12a | 0.27±0.06a | 0.917 | <0.01 |
FD | 10.79±0.56a | 0.75±0.13a | 0.27±0.05a | 0.934 | <0.01 |
处理 | 排放潜势/ (mg g−1) | 最大排放速率/ (mgkg−1 d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 121.04±8.05b | 0.83±1.33a | 0.33±0.09a | 0.928 | <0.01 |
FA | 134.98±8.19b | 0.67±1.27a | 0.28±0.07ab | 0.952 | <0.01 |
FB | 148.59±16.00b | 0.29±0.60a | 0.20±0.06bc | 0.931 | <0.01 |
FC | 210.11±19.41a | 0.26±0.35a | 0.09±0.04c | 0.875 | <0.01 |
FD | 65.05±17.25c | 0.14±0.32a | 0.13±0.05c | 0.900 | <0.01 |
Table 2 Key parameters of CH4 emission during constant temperature culture
处理 | 排放潜势/ (mg g−1) | 最大排放速率/ (mgkg−1 d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 121.04±8.05b | 0.83±1.33a | 0.33±0.09a | 0.928 | <0.01 |
FA | 134.98±8.19b | 0.67±1.27a | 0.28±0.07ab | 0.952 | <0.01 |
FB | 148.59±16.00b | 0.29±0.60a | 0.20±0.06bc | 0.931 | <0.01 |
FC | 210.11±19.41a | 0.26±0.35a | 0.09±0.04c | 0.875 | <0.01 |
FD | 65.05±17.25c | 0.14±0.32a | 0.13±0.05c | 0.900 | <0.01 |
[1] |
ANDREAS K, CASEY B, MUAMMAR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature reviews. Microbiology, 19(6): 360-374.
DOI PMID |
[2] |
BANWART S, BLACK H, CAI Z, et al., 2014. Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop[J]. Carbon management, 5(2): 185-192.
DOI URL |
[3] |
FRIESE A, BAUER K, GLOMBITZA C, et al., 2021. Organic matter mineralization in modern and ancient ferruginous sediments[J]. Nature communications 12: 2216.
DOI PMID |
[4] |
HAN L F, SUN K, JIN J, et al., 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 94: 107-121.
DOI URL |
[5] |
HUIJUAN L, JIALI C, PENGFEI L, et al., 2015. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental microbiology, 17(5): 1533-1547.
DOI PMID |
[6] |
LAL R, 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security[J]. Science, 304(5677):1623-1627.
DOI PMID |
[7] |
LIANG S, HAILIANG D, GEMMA R, et al., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 14(10): 651-662.
DOI PMID |
[8] |
LUONG N, VU MINH T, MD A H J, et al., 2021. Promotion of direct interspecies electron transfer and potential impact of conductive materials in anaerobic digestion and its downstream processing-a critical review[J]. Bioresource Technology, 341: 125847.
DOI URL |
[9] |
MARANGUIT D, GUILLAUME T, KUZYAKOV Y, 2017. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms[J]. Catena, 158: 161-170.
DOI URL |
[10] |
SHI L, DONG H, REGUERA G, et al., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 14(10): 651-662.
DOI PMID |
[11] |
SOUICHIRO K, KAZUHITO H, KAZUYA W, 2012. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental microbiology, 14(7): 1646-1654.
DOI URL |
[12] |
WANG Y, ZHANG Z Y, HAN L F, et al., 2019. Preferential molecular fractionation of dissolved organic matter by iron minerals with different oxidation states[J]. Chemical Geology, 520: 69-76.
DOI URL |
[13] |
WEN Y L, LIU W J, DENG W B, et al., 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration[J]. Science of the Total Environment, 651(Part 1): 591-600.
DOI URL |
[14] | XIAO K Q, ZHAO Y, LIANG C, et al., 2023. Introducing the soil mineral carbon pump[J]. Nature Reviews Earth & Environment, 4(3): 135-136. |
[15] |
YANG Z M, SHI X S, WANG C S, et al., 2015. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors[J]. Scientific Reports, 12(5): 16118.
DOI |
[16] |
ZHAO Z Q, L Y, X Q, et al., 2017. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 115: 266-277.
DOI PMID |
[17] |
ZHUANG L, TANG J, WANG Y Q, et al., 2015. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J]. Journal of Hazardous Materials, 293: 37-45.
DOI PMID |
[18] | 陈家坊, 何群, 邵宗臣, 1983. 土壤中氧化铁的活化过程的探讨[J]. 土壤学报, 20(4): 387-393. |
CHEN J F, HE Q, SHAO Z C, 1983. Discussion on the activation process of iron oxide in soil[J]. Acta Pedologica Sinica, 20(4): 387-393. | |
[19] | 陈志怀, 王旭刚, 孙丽蓉, 等, 2023. 石灰性水稻土中硝酸盐依赖型与光合型亚铁氧化过程[J]. 土壤学报, 60(1): 127-137. |
CHEN Z H, WANG X G, SUN L R, et al., 2023. Nitrate-dependent and photosynthetic ferrous oxidation processes in calcic paddy soils[J]. Acta Pedologica Sinica, 60(1): 127-137. | |
[20] | 程琨, 潘根兴, 2021. 农业与碳中和[J]. 科学, 73(6): 8-12. |
CHENG K, PAN G X, 2021. Agriculture and carbon neutrality[J]. Science, 73(6): 8-12.
DOI URL |
|
[21] |
段勋, 李哲, 刘淼, 等, 2022. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 37(2): 202-211.
DOI |
DUAN X, LI Z, LIU M, et al., 2022. Progress in studies on iron-mediated soil organic carbon sequestration and mineralization[J]. Advances in Earth Sciences, 37(2): 202-211. | |
[22] | 国家统计局, 2021. 中国统计年鉴 (总第40期 NO.40)[M]. 北京: 中国统计出版社. |
National Bureau of Statistics (Ed.), 2021. China Statistical Yearbook (Total NO.40)[M]. Beijing: China Statistics Press. | |
[23] | 何群, 陈家坊, 1983. 土壤中游离铁和络合态铁的测定[J]. 土壤, 15(6): 242-244. |
HE Q, CHEN J F, 1983. Determination of free iron and complex iron in soil[J]. Soil Research, 15(6): 242-244. | |
[24] | 李建, 王鸿辉, 马美萍, 等, 2021. 磁铁矿促进微生物种间电子传递的机制[J]. 应用与环境生物学报, 28(5): 1331-1340. |
LI J, WANG H H, MA M P, et al., 2021. Mechanism of magnetite promoting electron transfer between microbial species[J]. Chinese Journal of Applied & Environmental Biology, 28(5): 1331-1340. | |
[25] | 李文军, 黄庆海, 李大明, 等, 2021. 长期施肥红壤性稻田和旱地土壤有机碳积累差异[J]. 植物营养与肥料学报, 27(3): 544-552. |
LI W J, HUANG Q H, LI D M, et al., 2021. Differences in soil organic carbon accumulation between long-term fertilized red soil paddy field and dry land[J]. Plant Nutrition and Fertilizer Journal, 27(3): 544-552. | |
[26] | 刘侯俊, 陈红娜, 王俊梅, 等, 2017. 长期施肥对棕壤铁形态及其有效性的影响[J]. 植物营养与肥料学报, 23(1): 36-43. |
LIU H J, CHEN H N, WANG J M, et al., 2017. Effects of long-term fertilization on iron morphology and availability in brown soil[J]. Plant Nutrition and Fertilizer Journal, 23(1): 36-43. | |
[27] | 刘琪, 李宇虹, 李哲, 等, 2021. 不同水分条件和微生物生物量水平下水稻土有机碳矿化及其影响因子特征[J]. 环境科学, 42(5): 2440-2448. |
LIU Q, LI Y H, LI Z, et al., 2021. Characteristics of organic carbon mineralization and its influencing factors in paddy soil under different water conditions and microbial biomass levels[J]. Environmental Science, 42(5): 2440-2448. | |
[28] | 任向宁, 董玉祥, 王秋香, 2018. 珠三角核心区农田耕层土壤有机碳库储量时空变化特征及其影响因素识别[J]. 热带地理, 38(5): 668-677. |
REN X N, DONG Y X, WANG Q X, 2018. Spatio-temporal variation of soil organic carbon pool in farmland in the core area of the Pearl River Delta and identification of its influencing factors[J]. Tropical Geography, 38(5): 668-677. | |
[29] | 孙博雅, 程永毅, 肖广全, 等, 2021. 典型气田土壤铁还原活性与微生物群落关系研究[J]. 环境科学学报, 41(10): 4170-4178. |
SUN B Y, CHENG Y Y, XIAO G Q, et al., 2021. Relationship between soil iron reducing activity and microbial community in typical gas fields[J]. Journal of Environmental Sciences, 41(10): 4170-4178. | |
[30] | 唐子阳, 汤佳, 庄莉, 等, 2016. 土壤铁氧化物对有机质产甲烷过程的影响及其机制[J]. 生态学杂志, 35(6): 1653-1660. |
TANG Z Y, TANG J, ZHUANG L, et al., 2016. Effect of soil iron oxides on methane production of organic matter and its mechanism[J]. Chinese Journal of Ecology, 35(6): 1653-1660. | |
[31] | 王媛媛, 郑世超, 黄文力, 等, 2022. 零价铁与磁铁矿促进半干式猪粪厌氧产甲烷的效能与机理研究[J]. 环境科学学报, 42(12): 215-223. |
WANG Y Y, ZHENG S C, HUANG W L, et al., 2022. Effect and mechanism of zero-valent iron and magnetite on anaerobic methane production from semi-dry pig manure[J]. Journal of Environmental Sciences, 42(12): 215-223.
DOI URL |
|
[32] | 王云秋, 李宇虹, 祝贞科, 等, 2021. 铁氧化物对厌氧水稻土中乙酸矿化、转化及其激发效应的影响[J]. 土壤学报, 59(6): 1683-1694. |
WANG Y Q, LI Y H, ZHU Z K, et al., 2021. Effects of iron oxides on acetic acid mineralization, transformation and its excitation effect in anaerobic paddy soil[J]. Journal of Soil Science, 59(6): 1683-1694. | |
[33] | 许祖诒, 陈家坊, 1980. 土壤中无定形氧化铁的测定[J]. 土壤通报 (6): 32-35. |
XU Z Y, CHEN J F, 1980. Determination of amorphous iron oxide in soil[J]. Chinese Journal of Soil Science (6): 32-35. | |
[34] | 张天娇, 汤佳, 庄莉, 等, 2014. 干湿交替条件下不同晶型铁氧化物对水稻土甲烷排放的影响[J]. 环境科学, 35(3): 901-907. |
ZHANG T J, TANG J, ZHUANG L, et al., 2014. Effects of different crystal types of iron oxides on methane emission from paddy soil under dry-wet alternating conditions[J]. Environmental Science, 35(3): 901-907.
DOI URL |
|
[35] | 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制[J]. 地球科学, 43(S1): 136-144. |
ZHANG X, CHEN T H, WANG J, et al., 2018. Effect of iron oxides on anaerobic methanogenesis of organic matter and its mechanism[J]. Earth Sciences, 43(S1): 136-144. | |
[36] | 朱晓艳, 袁宇翔, 宋长春, 等, 2020. 湿地土壤和沉积物异化铁还原过程研究进展[J]. 湿地科学, 18(1): 122-128. |
ZHU X Y, YUAN Y X, SONG C C, et al., 2020. Research progress of dissimilatory iron reduction process in wetland soil and sediment[J]. Wetland Science, 18(1): 122-128. |
[1] | DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition [J]. Ecology and Environment, 2022, 31(7): 1448-1455. |
[2] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[3] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environment, 2022, 31(3): 556-564. |
[4] | LI Mengli, XU Moxin, CHEN Yongshan, YE Lili, JIANG Jinping. Effects of Different Amounts of Calcium Carbonate on the Mineralization of Straw Organic Carbon in Calcareous Soil [J]. Ecology and Environment, 2022, 31(10): 2002-2009. |
[5] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environment, 2021, 30(5): 957-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn