Ecology and Environment ›› 2023, Vol. 32 ›› Issue (6): 1062-1069.DOI: 10.16258/j.cnki.1674-5906.2023.06.007
• Research Articles • Previous Articles Next Articles
LI Haipeng2(), HUANG Yuehua3,4(
), SUN Xiaodong5, CAO Qimin1,**(
), FU Fangxing1, SUN Chuhan3
Received:
2023-02-21
Online:
2023-06-18
Published:
2023-09-01
Contact:
CAO Qimin
李海鹏2(), 黄月华3,4,*(
), 孙晓东5, 曹启民1,**(
), 符芳兴1, 孙楚涵3
通讯作者:
曹启民
作者简介:
李海鹏(1996年生),男,技术员,硕士,研究方向为土传病害防控。E-mail: 2417289841@qq.com基金资助:
CLC Number:
LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan[J]. Ecology and Environment, 2023, 32(6): 1062-1069.
李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.06.007
土壤质地 | 日均气温/℃ | 日均降雨量/mm | 采样地 | 气候 |
---|---|---|---|---|
砂土 | 19.7 | 2.75 | 文城 | 热带季风气候 |
黏土 | 19.5 | 1.64 | 永发 | 热带季风气候 |
壤土 | 20.0 | 2.56 | 大成 | 热带季风气候 |
Table1 The survey results of field environment during the experiment
土壤质地 | 日均气温/℃ | 日均降雨量/mm | 采样地 | 气候 |
---|---|---|---|---|
砂土 | 19.7 | 2.75 | 文城 | 热带季风气候 |
黏土 | 19.5 | 1.64 | 永发 | 热带季风气候 |
壤土 | 20.0 | 2.56 | 大成 | 热带季风气候 |
处理组 | D/%1) | Di2) |
---|---|---|
砂土对照组 | 0 | 0 |
壤土对照组 | 0 | 0 |
黏土对照组 | 0 | 0 |
砂土处理组 | 77.9±4.9B3) | 52.1±5.7B |
壤土处理组 | 52.3±11.3C | 20.3±2.4C |
黏土处理组 | 95.1±4.8A | 83.2±12.2A |
Table 2 Disease incidence and disease severity index of three different textural soil
处理组 | D/%1) | Di2) |
---|---|---|
砂土对照组 | 0 | 0 |
壤土对照组 | 0 | 0 |
黏土对照组 | 0 | 0 |
砂土处理组 | 77.9±4.9B3) | 52.1±5.7B |
壤土处理组 | 52.3±11.3C | 20.3±2.4C |
黏土处理组 | 95.1±4.8A | 83.2±12.2A |
土壤理化性质 | 处理组 | 土壤质地 | |||||
---|---|---|---|---|---|---|---|
砂土 | 壤土 | 黏土 | |||||
pH | 对照组 | 5.41±0.04B1) | **2) | 4.84±0.09C | ** | 5.79±0.05A | ns |
处理组 | 5.05±0.06B | 4.39±0.04C | 5.79±0.14A | ||||
w(OM)/ ‰ | 对照组 | 7.20±0.98B | ns2) | 15.40±1.48aA | ns | 17.57±1.89aA | ns |
处理组 | 7.10±1.41B | 13.70±0.36aA | 16.90±2.36aA | ||||
w(AN)/ (mg·kg-1) | 对照组 | 68.83±5.60B | ns | 138.47±12.03aA | ns | 137.43±19.26aA | ns |
处理组 | 73.83±2.42b | 128.93±19.35ab | 147.50±17.14a | ||||
w(AP)/ (mg·kg-1) | 对照组 | 55.30±7.84A | ns | 17.32±3.22bB | ns | 3.83±1.26cB | ns |
处理组 | 47.13±5.79aA | 14.53±4.56bB | 3.67±0.06bB | ||||
w(AK)/ (mg·kg-1) | 对照组 | 39.30±8.78C | ns | 73.04±6.71B | ns | 129.97±14.40A | * 2) |
处理组 | 27.97±6.16C | 62.23±9.36B | 182.93±17.52A | ||||
SP/ % | 对照组 | 45.43±2.00B | ns | 56.13±1.84aA | ns | 59.68±3.61aA | * |
处理组 | 43.37±4.04a | 48.39±7.52a | 51.90±2.92a |
Table 3 Comparison of physicochemical properties among three different textural soil
土壤理化性质 | 处理组 | 土壤质地 | |||||
---|---|---|---|---|---|---|---|
砂土 | 壤土 | 黏土 | |||||
pH | 对照组 | 5.41±0.04B1) | **2) | 4.84±0.09C | ** | 5.79±0.05A | ns |
处理组 | 5.05±0.06B | 4.39±0.04C | 5.79±0.14A | ||||
w(OM)/ ‰ | 对照组 | 7.20±0.98B | ns2) | 15.40±1.48aA | ns | 17.57±1.89aA | ns |
处理组 | 7.10±1.41B | 13.70±0.36aA | 16.90±2.36aA | ||||
w(AN)/ (mg·kg-1) | 对照组 | 68.83±5.60B | ns | 138.47±12.03aA | ns | 137.43±19.26aA | ns |
处理组 | 73.83±2.42b | 128.93±19.35ab | 147.50±17.14a | ||||
w(AP)/ (mg·kg-1) | 对照组 | 55.30±7.84A | ns | 17.32±3.22bB | ns | 3.83±1.26cB | ns |
处理组 | 47.13±5.79aA | 14.53±4.56bB | 3.67±0.06bB | ||||
w(AK)/ (mg·kg-1) | 对照组 | 39.30±8.78C | ns | 73.04±6.71B | ns | 129.97±14.40A | * 2) |
处理组 | 27.97±6.16C | 62.23±9.36B | 182.93±17.52A | ||||
SP/ % | 对照组 | 45.43±2.00B | ns | 56.13±1.84aA | ns | 59.68±3.61aA | * |
处理组 | 43.37±4.04a | 48.39±7.52a | 51.90±2.92a |
土壤α多样性指数 | 处理组 | 砂土 | 显著性标记 | 壤土 | 显著性标记 | 黏土 | 显著性标记 |
---|---|---|---|---|---|---|---|
Shannon | 对照组 | 9.29±0.03bB | ** | 8.97±0.23cB | * | 9.51±0.09aA | ns |
处理组 | 8.17±0.08cB | 8.44±0.14bB | 9.38±0.10A | ||||
Chao1 | 对照组 | 2117.55±35.24aA | ** | 1621.72±99.54B | * | 2156.47±10.15aA | * |
处理组 | 1761.48±43.87B | 1330.85±55.02C | 2074.57±41.19A |
Table 4 Comparison of the α microbial diversity among three different textural soil
土壤α多样性指数 | 处理组 | 砂土 | 显著性标记 | 壤土 | 显著性标记 | 黏土 | 显著性标记 |
---|---|---|---|---|---|---|---|
Shannon | 对照组 | 9.29±0.03bB | ** | 8.97±0.23cB | * | 9.51±0.09aA | ns |
处理组 | 8.17±0.08cB | 8.44±0.14bB | 9.38±0.10A | ||||
Chao1 | 对照组 | 2117.55±35.24aA | ** | 1621.72±99.54B | * | 2156.47±10.15aA | * |
处理组 | 1761.48±43.87B | 1330.85±55.02C | 2074.57±41.19A |
Figure 1 The soil bacterial communities in different textural soil were composed of the species with top 10 highest relative abundance at the genus level after occurence of bacterial wilt
Figure 2 Heat map of the relative abundance of soil bacterial communities in different textural soil with the significant difference between the control and inoculation with Ralstonia solanacearum treatment at the genus level
Figure 3 Correlation analysis of different textural soils’ disease incidence and soil environmental factors and the PCoA analysis of each treatments’ physicochemical and microbial α diversity indicators
[1] |
BARBOSA J Z, HUNGRIA M, DA SILVA SENA J V, et al., 2021. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil[J]. Applied Soil Ecology, 163: 103913.
DOI URL |
[2] |
BOLGER A M, LOHSE M, USADEL B, 2014. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120.
DOI PMID |
[3] |
BONANOMI G, ANTIGNANI V, CAPODILUPO M, et al., 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases[J]. Soil Biology & Biochemistry, 42(2): 136-144.
DOI URL |
[4] |
CAO Y F, THOMASHOW L S, LUO Y, et al., 2022. Resistance to bacterial wilt caused by Ralstonia solanacearum depends on the nutrient condition in soil and applied fertilizers: A meta-analysis[J]. Agriculture Ecosystems & Environment, 329: 107874.
DOI URL |
[5] |
CHEN D L, WANG X X, CARRION V J, et al., 2022. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies[J]. Soil Biology & Biochemistry, 167: 108599.
DOI URL |
[6] |
CHEN S, QI G F, MA G Q, et al., 2020. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community[J]. Microbiological Research, 231: 126373.
DOI URL |
[7] |
CHEN Z M, WANG Q, MA J W, et al., 2020. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil[J]. Ecotoxicology and Environmental Safety, 196: 110453.
DOI URL |
[8] | CONRADIE T, JACOBS K, 2020. Seasonal and agricultural response of Acidobacteria present in two fynbos rhizosphere soils[J]. Diversity-Basel, 12(7): 277. |
[9] |
EDGAR R C, HAAS B J, CLEMENTE J C, et al., 2011. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 27(16): 2194-2200.
DOI PMID |
[10] | FAN J, TAN J, WANG R, et al., 2021. Factors affecting disease severity of tobacco bacterial wilt[J]. Tobacco Science & Technology, 54(10): 20-28. |
[11] |
FAN Y J, HU X M, ZHAO Y Y, et al., 2020. Urease producing microorganisms for coal dust suppression isolated from coal: Characterization and comparative study[J]. Advanced Powder Technology, 31(9): 4095-4106.
DOI URL |
[12] | FAOSTAT, 2020. Value of Agricultural Production[EB/OL]. 2020. [2022-10-31]. https://www.fao.org/8015a9d5-a9ff-482f-ba23-1862d4e21677 |
[13] |
GAO Y, LU J Y, LIN C L, et al., 2019. Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community[J]. Microorganisms, 7(12): 676.
DOI URL |
[14] |
HOLOCHOVA P, MASLANOVA I, SEDLACEK I, et al., 2020. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths[J]. Systematic and Applied Microbiology, 43(5): 126112.
DOI URL |
[15] |
LI J, WANG S, LUO J F, et al., 2021. Potential of chamomile recutita plant material to inhibit urease activity and reduce NH3 volatilization in two agricultural soils[J]. Atmosphere, 12(9): 1223.
DOI URL |
[16] |
LI Q C, WANG L L, FU Y, et al., 2022. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review[J]. Journal of Soils and Sediments, 23: 1485-1500.
DOI |
[17] |
LIN W W, LIN M H, ZHOU H Y, et al., 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PloS One, 14(5): e0217018.
DOI URL |
[18] |
LIU L J, SUN C L, LIU S R, et al., 2015. Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato[J]. PloS One, 10(4): e0121304.
DOI URL |
[19] |
LIU Y Q, WANG Y H, KONG W L, et al., 2020. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. Amb Express, 10(1): 108.
DOI |
[20] |
LIU Y Q, WU L, WU X W, et al., 2017. Analysis of microbial diversity in soil under ginger cultivation[J]. Scientifica, DOI: 10.1155/2017/8256865.
DOI |
[21] |
MAMPHOGORO T P, BABALOLA O O, AIYEGORO O A, 2020. Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum) and other Solanaceous crops[J]. Journal of Applied Microbiology, 129(3): 496-508.
DOI PMID |
[22] |
MI Y Z, ZHAO X L, LIU F F, et al., 2021. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains[J]. European Journal of Soil Biology, 105: 103329.
DOI URL |
[23] | MNDZEBELE B, NCUBE B, FESSEHAZION M, et al., 2020. Effects of cowpea-amaranth intercropping and fertilizer application on soil phosphatase activities, available soil phosphorus, and crop growth response[J]. Agronomy-Basel, 10(1): 79. |
[24] |
NAKAHARA H, MORI K, MORI T, et al., 2021. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium[J]. Journal of Microbiological Methods, 186: 106233.
DOI URL |
[25] |
ROBERTS D P, DENNY T P, SCHELL M A, 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity[J]. Journal of bacteriology, 170(4): 1445-1451.
DOI URL |
[26] |
ROS G H, 2012. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data[J]. Soil Biology & Biochemistry, 45: 132-135.
DOI URL |
[27] |
SU L, QIU P F, FANG Z Y, et al., 2022. Potassium phosphite enhances the antagonistic capability of Bacillus amyloliquefaciens to manage tomato bacterial wilt[J]. Plant Disease, 106(2): 654-660.
DOI URL |
[28] | TAFESSE S, BRAAM C, VAN MIERLO B, et al., 2021. Association between soil acidity and bacterial wilt occurrence in potato production in Ethiopia[J]. Agronomy-Basel, 11(8): 1541. |
[29] |
TALWAR C, NAGAR S, KUMAR R, et al., 2020. Defining the environmental adaptations of genus Devosia: Insights into its expansive short peptide transport system and positively selected genes[J]. Scientific Reports, 10(1): 1151.
DOI |
[30] |
TCHAKOUNTE G V T, BERGER B, PATZ S, et al., 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil[J]. Microbiological Research, 214: 47-59.
DOI PMID |
[31] |
WANG B, SUN H, YANG W C, et al., 2022. Potential utilization of vitamin C industrial effluents in agriculture: Soil fertility and bacterial community composition[J]. Science of the Total Environment, 851(Part 2): 158253.
DOI URL |
[32] | WANG L, QIU S, GUO J, et al, 2021. Light irradiation enables rapid start-up of nitritation through suppressing nxrb gene expression and stimulating ammoniaoxidizing bacteria[J]. Environmental Science & Technology, 55(19): 13297-13305. |
[33] |
WANG R, ZHANG H C, SUN L G, et al., 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 7(1): 343.
DOI PMID |
[34] |
WANG T T, HAO Y W, ZHU M Z, et al., 2019. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation[J]. Plant and Soil, 438(1-2): 421-433.
DOI |
[35] | XIAN L, YU G, WEI Y L, et al., 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 28(4): 548-557. |
[36] |
XUE G, ZHANG L L, FAN X Y, et al., 2022. Responses of soil fertility and microbiomes of atrazine contaminated soil to remediation by hydrochar and persulfate[J]. Journal of Hazardous Materials, 435: 128944.
DOI URL |
[37] | XUE H, LOZANO-DURAN R, MACHO A P, 2020. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum[J]. Plants-Basel, 9(4): 516. |
[38] | YANG Z N, LIU Z S, WANG K H, et al., 2022. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites[J]. Environmental Science & Ecotechnology, 10: 100169. |
[39] |
YIN S J, ZHANG X, SUO F Y, et al., 2022. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil[J]. Chemosphere, 298: 134191.
DOI URL |
[40] |
ZHANG C S, LIN Y, TIAN X Y, et al., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J]. Applied Soil Ecology, 112: 90-96.
DOI URL |
[41] |
ZHENG B X, BI Q F, HAO X L, et al., 2017. Massilia phosphatilytica sp nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil[J]. International Journal of Systematic and Evolutionary Microbiology, 67(8): 2514-2519.
DOI URL |
[42] |
ZHENG X F, LIU B, ZHU Y J, et al., 2019. Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China[J]. Canadian Journal of Microbiology, 65(7): 538-549.
DOI PMID |
[43] |
ZHU F X, ZHU C Y, ZHOU D M, et al., 2019. Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions[J]. Chemosphere, 216: 84-93.
DOI PMID |
[44] | 高升升, 2020. 高氮投入促进烟草青枯病爆发机理研究[D]. 重庆: 西南大学:26-32. |
GAO S S, 2020. Study on mechanism of high nitrogen input promoting outbreak of tobacco bacterial wilt[D]. Chongqing: Southwest University:26-32. | |
[45] | 梁捷, 2020. 海南省典型作物系统中砖红壤的环境基准值及环境容量研究[D]. 海口: 海南大学: 1-4. |
LIANG J, 2020. Study on environmental standard value and environmental capacity of brick red soil in typical crop system of Hainan Province[D]. Haikou: Hainan University: 1-4. | |
[46] | 孙小茗, 2006. 钾离子跨细胞膜吸收过程受铵影响的机理探讨[D]. 扬州: 扬州大学:40-53. |
SUN X M, 2006. Study on the mechanism of ammonium affecting the absorption of potassium ions across cell membranes[D]. Yangzhou: Yangzhou University:40-53. | |
[47] | 王杰, 龙世芳, 王正文, 等, 2020. 番茄青枯病防治研究进展[J]. 中国蔬菜 (1): 22-30. |
WANG J, LONG S F, WANG Z W, et al., 2020. Research progress in control of tomato bacterial wilt[J]. China Vegetables (1): 22-30. | |
[48] | 王贻鸿, 赵云峰, 孔凡玉, 等, 2018. 酸碱度对烟草青枯菌生长特性的影响[J]. 烟草科技, 51(9): 27-32. |
WANG Y H, ZHAO Y F, KONG F Y, et al, 2018. Effects of pH on growth characteristics of Ralstonia solanacearum in tobacco[J]. Tobacco Science & Technology, 51(9): 27-32. | |
[49] |
肖健, 陈思宇, 孙妍, 等, 2022. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 48(5): 1222-1234.
DOI |
XIAO J, CHEN S Y, SUN Y, et al, 2022. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications[J]. Acta Agronomica Sinica, 48(5): 1222-1234.
DOI |
|
[50] | 曾文青, 2021. 砧用冬瓜枯萎病抗性鉴定、转录组分析及嫁接适应性研究[D]. 南宁: 广西大学:11-12. |
ZENG W Q, 2021. Resistance identification, transcriptome analysis and grafting adaptability study of rootstocks wax gourd to Fusarium wilt[D]. Nanning: Guangxi University:11-12. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[3] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[4] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[5] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[6] | WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 62-69. |
[7] | SUN Zhan, WANG Shengjie, YANG Jinchang, WEI Yongcheng, LIN Chunhua, MA Haibin. Correlation Analysis of the Occurrence of Bacterial Wilt and Physicochemical Properties and Enzyme Activity of Root-Zone Soil of Casuarina spp. [J]. Ecology and Environment, 2022, 31(1): 70-78. |
[8] | LIN Li, DAI Lei, LIN Zebei, WU Jitong, YAN Wei, WANG Zhijie. Plant Diversity and Its Relationship with Soil Physicochemical Properties of Urban Forest Communities in Central Guizhou [J]. Ecology and Environment, 2021, 30(11): 2130-2141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn