Ecology and Environment ›› 2022, Vol. 31 ›› Issue (8): 1537-1546.DOI: 10.16258/j.cnki.1674-5906.2022.08.005
• Research Articles • Previous Articles Next Articles
WANG Lixiao(), LIU Jinxian, CHAI Baofeng*(
)
Received:
2021-10-20
Online:
2022-08-18
Published:
2022-10-10
Contact:
CHAI Baofeng
通讯作者:
柴宝峰
作者简介:
王礼霄(1988年生),女,博士研究生,主要从事微生物生态学研究。E-mail: 525079118@qq.com
基金资助:
CLC Number:
WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China[J]. Ecology and Environment, 2022, 31(8): 1537-1546.
王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.08.005
参数 Parameters | Farmland | R15-year | R20-year | R30-year |
---|---|---|---|---|
土壤酸碱度Soil pH | 6.54±0.16a | 6.47±0.03a | 6.41±0.04a | 6.58±0.10a |
土壤含水量Soil water content/% | 16.87±2.85b | 24.98±0.85a | 27.43±1.14a | 29.24±0.47a |
总氮Total nitrogen/% | 0.33±0.03a | 0.15±0.01c | 0.17±0.01c | 0.25±0.01b |
总碳Total carbon/% | 3.74±0.35a | 1.66±0.09c | 1.82±0.09c | 2.91±0.06b |
碳氮比carbon-nitrogen ratio | 11.42±0.11ab | 10.92±0.23b | 10.89±0.23b | 11.79±0.18a |
铵态氮NH4+-N/(g∙kg-1) | 1.32±0.05a | 0.45±0.0.03b | 0.42±0.01b | 0.42±0.01b |
硝态氮NO3--N/(g∙kg-1) | 0.38±0.01a | 0.19±0.04b | 0.16±0.03b | 0.15±0.02b |
过氧化氢酶 Catalase/mg∙(g∙20 min)-1 | 1.32±0.04a | 1.38±0.06a | 1.28±0.10a | 0.48±0.03b |
脲酶 Urease/[mg∙(g∙24 h)-1] | 1.62±0.01a | 0.61±0.02b | 0.61±0.01b | 0.49±0.03c |
蔗糖酶 Sucrase/[mg∙(g∙24 h)-1] | 0.33±0.01b | 0.51±0.06bc | 0.47±0.03c | 0.83±0.06a |
植物香农指数 Plant Shannon index | — | 2.45±0.03a | 2.14±0.09b | 2.05±0.07b |
植物丰富度指数 Plant richness index | — | 15.33±0.88a | 12.00±0.58b | 10.33±0.67b |
植物均匀度指数 Plant evenness index | — | 0.76±0.02a | 0.71±0.03a | 0.76±0.03a |
优势种 Dominant species | — | 嵩草 (Kobresia bellardii)、苔草 (Carex spp.)、委陵菜 (Potentilla chinensis Ser.) | 委陵菜 (Potentilla chinensis Ser.)、车前 (Plantago asiatica L.)、嵩草 (Kobresia bellardii) | 米口袋 (Gueldenstaedtia verna( Georgi) Boriss)、嵩草 (Kobresia bellardii)、车前 (Plantago asiatica L.) |
Table 1 Soil physicochemical properties and plant community parameters under different revegetation habitats and farmland
参数 Parameters | Farmland | R15-year | R20-year | R30-year |
---|---|---|---|---|
土壤酸碱度Soil pH | 6.54±0.16a | 6.47±0.03a | 6.41±0.04a | 6.58±0.10a |
土壤含水量Soil water content/% | 16.87±2.85b | 24.98±0.85a | 27.43±1.14a | 29.24±0.47a |
总氮Total nitrogen/% | 0.33±0.03a | 0.15±0.01c | 0.17±0.01c | 0.25±0.01b |
总碳Total carbon/% | 3.74±0.35a | 1.66±0.09c | 1.82±0.09c | 2.91±0.06b |
碳氮比carbon-nitrogen ratio | 11.42±0.11ab | 10.92±0.23b | 10.89±0.23b | 11.79±0.18a |
铵态氮NH4+-N/(g∙kg-1) | 1.32±0.05a | 0.45±0.0.03b | 0.42±0.01b | 0.42±0.01b |
硝态氮NO3--N/(g∙kg-1) | 0.38±0.01a | 0.19±0.04b | 0.16±0.03b | 0.15±0.02b |
过氧化氢酶 Catalase/mg∙(g∙20 min)-1 | 1.32±0.04a | 1.38±0.06a | 1.28±0.10a | 0.48±0.03b |
脲酶 Urease/[mg∙(g∙24 h)-1] | 1.62±0.01a | 0.61±0.02b | 0.61±0.01b | 0.49±0.03c |
蔗糖酶 Sucrase/[mg∙(g∙24 h)-1] | 0.33±0.01b | 0.51±0.06bc | 0.47±0.03c | 0.83±0.06a |
植物香农指数 Plant Shannon index | — | 2.45±0.03a | 2.14±0.09b | 2.05±0.07b |
植物丰富度指数 Plant richness index | — | 15.33±0.88a | 12.00±0.58b | 10.33±0.67b |
植物均匀度指数 Plant evenness index | — | 0.76±0.02a | 0.71±0.03a | 0.76±0.03a |
优势种 Dominant species | — | 嵩草 (Kobresia bellardii)、苔草 (Carex spp.)、委陵菜 (Potentilla chinensis Ser.) | 委陵菜 (Potentilla chinensis Ser.)、车前 (Plantago asiatica L.)、嵩草 (Kobresia bellardii) | 米口袋 (Gueldenstaedtia verna( Georgi) Boriss)、嵩草 (Kobresia bellardii)、车前 (Plantago asiatica L.) |
Figure 1 The relative abundance of dominant bacteria phylum and variation analysis from different revegetation habitats and farmland n=3. * indicates significant differences at the 0.05 level; ** indicates significant differences at the 0.01 level. The same below
样地类型 Plot types | 多样性指数Diversity index | ||||
---|---|---|---|---|---|
sobs指数 sobs | 香农指数Shannon index | 辛普森指数Simpson index | ACE指数 ACE index | 超1指数 Chao1 index | |
Farmland | 2382.00±104.24a | 6.60±0.07a | 0.003±0.000c | 3173.08±160.56a | 3200.63±130.02a |
R15-year | 1807.33±98.79c | 5.84±0.19c | 0.010±0.003a | 2555.52±101.41c | 2496.17±97.03b |
R20-year | 2019.33±63.75bc | 6.13±0.03bc | 0.007±0.000ab | 2764.29±140.75ab | 2774.28±138.28b |
R30-year | 2143.00±65.04ab | 6.27±0.05ab | 0.006±0.000ab | 2882.00±104.76ab | 2858.61±74.51ab |
Table 2 Diversity of bacteria communities of different revegetation habitats and farmland
样地类型 Plot types | 多样性指数Diversity index | ||||
---|---|---|---|---|---|
sobs指数 sobs | 香农指数Shannon index | 辛普森指数Simpson index | ACE指数 ACE index | 超1指数 Chao1 index | |
Farmland | 2382.00±104.24a | 6.60±0.07a | 0.003±0.000c | 3173.08±160.56a | 3200.63±130.02a |
R15-year | 1807.33±98.79c | 5.84±0.19c | 0.010±0.003a | 2555.52±101.41c | 2496.17±97.03b |
R20-year | 2019.33±63.75bc | 6.13±0.03bc | 0.007±0.000ab | 2764.29±140.75ab | 2774.28±138.28b |
R30-year | 2143.00±65.04ab | 6.27±0.05ab | 0.006±0.000ab | 2882.00±104.76ab | 2858.61±74.51ab |
Figure 4 Redundancy analysis of bacterial community composition and Pearson analysis with dominant phylum in different revegetation grasslands and farmland
Figure 5 Relationship between plant and soil bacterial α-diversity and β-diversity (based on Bray-Curtis distances) in different revegetation grasslands and farmland
Figure 6 Gene copy numbers of functional genes involved in major steps of the nitrogen cycle (amoA-AOA, amoA-AOB, nifH, nirK and nirS) in different revegetation grasslands and farmland n=3; different lowercase letters indicate significant differences P<0.05
参数 Parameter | Actinobacteriota | Proteobacteria | Acidobacteriota | Chloroflexi | Gemmatimonadota | Firmicutes | Verrucomicrobiota | Bacteroidota | Patescibacteria | Methylomirabilota | Myxococcota |
---|---|---|---|---|---|---|---|---|---|---|---|
amoA-AOA | 0.063 | 0.324 | 0.544 | 0.736** | 0.365 | 0.227 | -0.185 | 0.834** | 0.111 | -0.330 | 0.684* |
AmoB-AOB | 0.275 | 0.420 | 0.285 | 0.742** | 0.524 | 0.499 | -0.395 | 0.839** | 0.093 | -0.371 | 0.953** |
nifH | -0.252 | -0.163 | 0.211 | 0.551 | -0.090 | 0.050 | -0.137 | 0.539 | -0.193 | -0.513 | 0.528 |
nirK | -0.169 | 0.143 | 0.671 | 0.528 | -0.037 | -0.116 | 0.288 | 0.62229* | 0.448 | -0.302 | 0.251 |
nirS | 0.252 | 0.404 | 0.405 | 0.811** | 0.510 | 0.455 | -0.320 | 0.854** | 0.073 | -0.373 | 0.903** |
Table 3 Correlation between dominant phylum and functional genes involved in the main processes of nitrogen cycling
参数 Parameter | Actinobacteriota | Proteobacteria | Acidobacteriota | Chloroflexi | Gemmatimonadota | Firmicutes | Verrucomicrobiota | Bacteroidota | Patescibacteria | Methylomirabilota | Myxococcota |
---|---|---|---|---|---|---|---|---|---|---|---|
amoA-AOA | 0.063 | 0.324 | 0.544 | 0.736** | 0.365 | 0.227 | -0.185 | 0.834** | 0.111 | -0.330 | 0.684* |
AmoB-AOB | 0.275 | 0.420 | 0.285 | 0.742** | 0.524 | 0.499 | -0.395 | 0.839** | 0.093 | -0.371 | 0.953** |
nifH | -0.252 | -0.163 | 0.211 | 0.551 | -0.090 | 0.050 | -0.137 | 0.539 | -0.193 | -0.513 | 0.528 |
nirK | -0.169 | 0.143 | 0.671 | 0.528 | -0.037 | -0.116 | 0.288 | 0.62229* | 0.448 | -0.302 | 0.251 |
nirS | 0.252 | 0.404 | 0.405 | 0.811** | 0.510 | 0.455 | -0.320 | 0.854** | 0.073 | -0.373 | 0.903** |
[1] |
BAI Z, YE J, WEI Y L, et al., 2021. Soil depth-dependent C/N stoichiometry and fungal and bacterial communities along a temperate forest succession gradient[J]. CATENA, DOI: 10.1016/j.catena.2021.105613.
DOI |
[2] |
BARDGETT R D, PUTTEN W, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI URL |
[3] |
BIER R L, VOSS K A, BERNHARDT E S, 2014. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams[J]. The ISME Journal, 9(6): 1378.
DOI URL |
[4] |
BLAUD A, BAS V, MENON M, et al., 2017. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size[J]. Applied Soil Ecology, 125: 1-11.
DOI URL |
[5] |
CAMPBELL B J, POLSON S W, HANSON T E, et al., 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil[J]. Environmental Microbiology, 12(7): 1842-1854.
DOI PMID |
[6] |
CAO C Y, ZHANG Y, CUI Z B, et al., 2021. Recovery of Soil-Denitrifying Community along a Chronosequence of Sand-Fixation Forest in a Semi-Arid Desertified Grassland[J]. Forests, 12(3): 354.
DOI URL |
[7] | DENG L, ZHANG Z N, SHANGGUAN Z, et al., 2014. Long-term fencing effects on plant diversity and soil properties in China[J]. Soil Tillage Researh, 137: 7-15. |
[8] |
FAN M C, LIN Y B, HUO H B, et al., 2016. Microbial communities in riparian soils of a settling pond for mine drainage treatment[J]. Water Research, 96: 198-207.
DOI PMID |
[9] |
HOSSAIN Z, SUGIYAMA S I, 2011. Geographical structure of soil microbial communities in northern Japan: Effects of distance, land use type and soil properties[J]. European Journal of Soil Biology, 47(2): 88-94.
DOI URL |
[10] |
KARDOL P, BEZEMER T M, PUTTEN W, 2010. Temporal variation in plant-soil feedback controls succession[J]. Ecology Letters, 9(9): 1080-1088.
DOI URL |
[11] | KURAMAE E, GAMPER H, VAN VEEN J, et al., 2011. Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH[J]. FEMS Microbiology, 77(2): 285-294. |
[12] |
KUYPERS M M M, MARCHANT H K, KARTAL BORAN, et al., 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.
DOI PMID |
[13] |
LEE-CRUZ L, EDWARDS D P, TRIPATHI B M, et al., 2013. Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo[J]. Applied and Environmental Microbiology, 79(23): 7290-7297.
DOI URL |
[14] |
LI H, YE D D, WANG X G, et al., 2014. Soil bacterial communities of different natural forest types in Northeast China[J]. Plant and Soil, 383 (1-2): 203-216.
DOI URL |
[15] |
LI Y Q, XU M, SUN O J, et al., 2004. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 36(12): 2111-2114.
DOI URL |
[16] |
LIN Y T, WHITMAN W B, COLEMAN D C, et al., 2012. Comparison of soil bacterial communities between coastal and inland forests in a subtropical area[J]. Applied Soil Ecology, 60: 49-55.
DOI URL |
[17] |
LOZANO Y M, HORTAL S, ARMAS C, et al., 2014. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment[J]. Soil Biology and Biochemistry, 78: 298-306.
DOI URL |
[18] | LUO Z, LIU J, JIA T, et al., 2020. Soil Bacterial Community Response and Nitrogen Cycling Variations Associated with Subalpine Meadow Degradation on the Loess Plateau, China[J]. Applied Environmental Microbiology, 86(9): e00180-20. |
[19] |
MARTENS W, BERUBE P M, URAKAWA H, et al., 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 461(7266): 976-979.
DOI URL |
[20] |
MATETSKAYA A Y, KARASYOVA T A, POPOVA N N, et al., 2021 Conservation and Restoration Prospects of Semi-Natural Plant Communities when Creating Parks in the Southern Russia's Steppe[J]. IOP Conference Series: Earth and Environmental Science, 817(1): 12065-12069.
DOI URL |
[21] |
NACKE H, FISCHER C, THURMER A, et al., 2014. Land use type significantly affects microbial gene transcription in soil[J]. Microbial Ecology, 67(4): 919-930.
DOI PMID |
[22] | NIE Y X, HAN X G, CHEN J, et al., 2019. Interrelationships among soil nitrogen transformation rates, functional gene abundance and soil properties in a tropical forest with exogenous N inputs[J]. Biogeosciences Discussions, 101: 1-29. |
[23] |
SCHIMEL J, BALSER T C, WALLENSTEIN M, 2007, Microbial stress-response physiology and ITS implications for ecosystem function[J]. Ecology, 88(6): 1386-1394.
DOI PMID |
[24] |
SCHMIDT J E, KENT A D, BRISSON V L, et al., 2019. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling[J]. Microbiome, 7(1): 146.
DOI PMID |
[25] |
TANG Y Q, YU G R, ZHANG X Y, et al., 2018. Changes in nitrogen- cycling microbial communities with depth in temperate and subtropical forest soils[J]. Applied Soil Ecology, 124: 218-228.
DOI URL |
[26] |
TSCHERKO D, HAMMESFAHR U, ZELTNEr G, et al., 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain[J]. Basic and Applied Ecology, 6(4): 367-383.
DOI URL |
[27] |
WANG B, GUO B L, XUE S, et al., 2011. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau[J]. Environmental Earth Sciences, 62(5): 915-925.
DOI URL |
[28] |
WANG G L, LIU G B, XU M X, 2009. Above and belowground dynamics of plant community succession following abandonment of farmland on the Loess Plateau, China[J]. Plant and Soil, 322(1): 343.
DOI URL |
[29] | WANG H H, LI X, LI X, et al., 2017. Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils[J]. PLoS One, 12(12): e189506. |
[30] |
WANG Y Y, QI L, HUANG R, et al., 2020. Characterization of Denitrifying Community for Application in Reducing Nitrogen: A Comparison of nirK and nirS Gene Diversity and Abundance[J]. Applied Biochemistry Biotechnology, 192(1): 22-41.
DOI URL |
[31] |
YANG Y F, WU L W, LIN Q Y, et al., 2013. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland[J]. Global Change Biology, 19(2): 637-648.
DOI PMID |
[32] |
YAO M J, RUI J P, LI J B, et al., 2014. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe[J]. Soil Biology and Biochemistry, 79: 81-90.
DOI URL |
[33] |
YUAN Y L, SI G C, WANG J, et al., 2014. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 87(1): 121-132.
DOI PMID |
[34] |
ZHANG C, LIU G B, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 97: 40-49.
DOI URL |
[35] |
ZHANG Y G, ZHANG X Q, LIU X D, et al., 2007. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes[J]. FEMS Microbiology Letters, 266(2): 144-151.
PMID |
[36] |
ZHONG Y Q W, YANG W M, WANG R W, et al., 2018. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession[J]. Soil Biology and Biochemistry, 123: 207-217.
DOI URL |
[37] |
ZUO X A, WANG S K, LÜ P, et al., 2016. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland[J]. Ecology and Evolution, 6(1): 318-328.
DOI PMID |
[38] | 常庆瑞, 安韶山, 刘京, 等, 1999. 黄土高原恢复植被防止土地退化效益研究[J]. 土壤侵蚀与水土保持学报, 5(4): 6-9. |
CHANG Q R, AN S S, LIU J, et al., 1999. Study on benefits of recovering vegetation to prevent land deterioration on Loess Plateau[J]. Journal of Soil Erosion and Soil and Water Conservation, 5(4): 6-9. | |
[39] | 樊博, 林丽, 曹广民, 等, 2020. 不同演替状态下高寒草甸土壤物理性质与植物根系的相互关系[J]. 生态学报, 40(7): 2300-2309. |
FAN B, LIN L, CAO G M, et al., 2020. Relationship between plant roots and physical soil properties in alpine meadows at different degradation stages[J]. Acta Ecologica Sinica, 40(7): 2300-2309. | |
[40] | 海旭莹, 董凌勃, 汪晓珍, 等, 2020. 黄土高原退耕还草地C、N、P生态化学计量特征对植物多样性的影响[J]. 生态学报, 40(23): 8570-8581. |
HAI X Y, DONG L B, WANG X Z, et al., 2020. Effects of carbon, nitrogen, and phosphorus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau[J]. Acta Ecologica Sinica, 40(23): 8570-8581. | |
[41] | 贺纪正, 张丽梅, 2013. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 40(1): 98-108. |
HE J Z, ZHANG L M, 2013. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 40(1): 98-108. | |
[42] | 史利江, 高杉, 姚晓军, 等, 2021. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 30(9): 1787-1796. |
SHI L J, GAO S, YAO X J, et al., 2021. Characteristics of soil carbon and nitrogen accumulation under different vegetation restoration in the loess hilly region of Northwest Shanxi Province[J]. Ecology and Environmental Sciences, 30(9): 1787-1796. | |
[43] |
王光华, 刘俊杰, 于镇华, 等, 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(2): 14-20.
DOI |
WANG G H, LIU J J, YU Z H, et al., 2016. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(2): 14-20. | |
[44] | 王杨, 2014. 不同酸度土壤硝化和反硝化活性的差异[D]. 大连: 大连交通大学: 7. |
WANG Y, 2014. Difference in the activity of nitrification and denitrification with different soil acidity[D]. Dalian: Dalian Jiaotong University: 7. | |
[45] | 徐白璐, 钟文辉, 黄欠如, 等, 2017. 长期施肥酸性旱地土壤硝化活性及自养硝化微生物特征[J]. 环境科学, 38(8): 3473-3482. |
XU B L, ZHONG W H, HUANG Q R, et al., 2017. Nitrification activity and autotrophic nitrifiers in long-term fertilized acidic upland soils[J]. Environmental Science, 38(8): 3473-3482. | |
[46] | 张文彦, 樊江文, 钟华平, 等, 2010. 中国典型草原优势植物功能群氮磷化学计量学特征研究[J]. 草地学报, 18(4): 503-509. |
ZHANG W Y, FAN J W, ZHONG H P, et al., 2010. The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China[J]. Acta Agrestia Sinica, 18(4): 503-509. | |
[47] | 赵鹏宇, 2019. 山西亚高山华北落叶松林土壤微生物群落构建机制[D]. 太原: 山西大学: 17-19. |
ZHAO P Y, 2019. Assembly mechanism of soil microbial community in Larix principis-rupprechtii Mayr forest of subalpine north China in Shanxi Province[D]. Taiyuan: Shanxi University: 17-19. |
[1] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[2] | WANG Zhe, TIAN Shengni, ZHANG Yongmei, ZHANG Heyu, ZHOU Zhongze. Study on the Plant Community Characteristics of the Estuary of Pai River in Chaohu Lake [J]. Ecology and Environment, 2022, 31(9): 1823-1831. |
[3] | GU Chen, JIA Zhiqing, DU Bobo, HE Lingxianzi, LI Qingxue. Reviews and Prospects of Ecological Restoration Measures for Degraded Grasslands of China [J]. Ecology and Environment, 2022, 31(7): 1465-1475. |
[4] | LIU Xianghong, YIN Qinrui, XIN Jianbao, LIU Wei, XU Xiuquan, HUANG Zhanbin, AN Ruyi. Technology Research Progress and Prospects of Natural Vegetation Restoration and Its Artificial Promotion [J]. Ecology and Environment, 2022, 31(7): 1476-1488. |
[5] | ZHANG Bowen, QIN Juan, REN Zhongming, CHEN Ziqi, YAO Shunjia, LIU Ye, SONG Yanyu. Effects of Slope Aspect on Understory Plant Diversity of Pinus massoniana Pure Forest and Different Coniferous and Broad-leaved Mixed Forest Types in North Subtropical Region [J]. Ecology and Environment, 2022, 31(6): 1091-1100. |
[6] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[7] | SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil [J]. Ecology and Environment, 2022, 31(3): 487-496. |
[8] | XUAN Jin, LI Zuchan, ZOU Cheng, QIN Zibo, WU Yahua, HUANG Liujing. Multi-scale Effects of Central Bar Landscape Class and Pattern on Plant Diversity in Minjiang River: The Case of Minjiang River Basin (Fuzhou Section) Planning [J]. Ecology and Environment, 2022, 31(12): 2320-2330. |
[9] | HAN Xin, YUAN Chunyang, LI Jihong, HONG Zongwen, LIU Xuan, DU Ting, LI Han, YOU Chenming, TAN Bo, ZHU Peng, XU Zhenfeng. Effects of Tree Species and Soil Layers on Soil Extractable Nitrogen Content [J]. Ecology and Environment, 2022, 31(11): 2143-2151. |
[10] | CHEN Shuangshuang, ZHU Ninghua, ZHOU Guangyi, YUAN Xingming, SHANG Hai, WANG Yixuan. Vegetation and Soil Physical Characteristics of Artificial Arbor Forests under Different Grades of Rocky Desertification [J]. Ecology and Environment, 2022, 31(1): 52-61. |
[11] | ZHAO Li, GUO Chunyan, ZHANG Wenjun, WANG Xiaojiang, LIU Pingsheng. Community Characteristics and Their Correlation Analysis of Typical Natural Forest in Zhalantun [J]. Ecology and Environment, 2021, 30(7): 1353-1359. |
[12] | HONG Wenjun, MO Luojian, ZHANG Hao. Effects of Different Thinning on the Structure of Acacia mangium Plantation in South China [J]. Ecology and Environment, 2021, 30(7): 1360-1367. |
[13] | ZHENG Zhiheng, XIONG Kangning, RONG Li, CHI Yongkuan. Effects of Biological Crusts on Soil Properties in Karst Rocky Desertification Areas of Different Levels [J]. Ecology and Environment, 2021, 30(6): 1202-1212. |
[14] | ZHOU Dixuan, LIN Yongbiao, WANG Yanjia, LIU Zhanfeng, ZHOU Lixia. Assessment of Main Ecosystem Services in Subtropical Plantations [J]. Ecology and Environment, 2021, 30(5): 907-919. |
[15] | WANG Haoyue, GUO Yuefeng, XU Yajie, QI Wei, BU Fanjing, QI Huijuan. Coupling Relationship between Vegetation and Soil System in Ecological Restoration of Different Stand Types in Jiufeng Mountain [J]. Ecology and Environment, 2021, 30(12): 2309-2316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn