Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 759-770.DOI: 10.16258/j.cnki.1674-5906.2022.04.014
• Research Articles • Previous Articles Next Articles
ZHANG Miaomiao1,2(), CHEN Shutao1,2,*(
), DING Sicheng2, WANG Jin2, ZHANG Kun2
Received:
2021-11-08
Online:
2022-04-18
Published:
2022-06-22
Contact:
CHEN Shutao
张苗苗1,2(), 陈书涛1,2,*(
), 丁司丞2, 王瑾2, 章堃2
通讯作者:
陈书涛
作者简介:
张苗苗(1997年生),女,硕士研究生,主要研究方向为环境微生物学与气候变化。E-mail: 18753882194@163.com
基金资助:
CLC Number:
ZHANG Miaomiao, CHEN Shutao, DING Sicheng, WANG Jin, ZHANG Kun. Effects of Warming and Straw Application on the Composition and Diversity of Soil Fungal Community in A Soybean-winter Wheat Rotation Crop Field[J]. Ecology and Environment, 2022, 31(4): 759-770.
张苗苗, 陈书涛, 丁司丞, 王瑾, 章堃. 增温及秸秆施用对大豆-冬小麦轮作农田土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2022, 31(4): 759-770.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.014
Figure 1 Effects of warming and straw application on the relative abundance of soil fungi at the phylum, class and order levels in the soybean crop field
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 子囊菌门 Ascomycota | 52.0±11.1 (a) | 27.2±1.3 (bM) | 58.7±1.0 (a) | 46.2±5.3 (abM) |
接合菌门 Zygomycota | 4.4±1.5 (b) | 4.0±0.9 (b) | 7.5±1.2 (ab) | 9.0±1.9 (a) | |
壶菌门 Chytridiomycota | 0.8±0.3 (a) | 0.5±0.1 a(M) | 0.7±0.3 (a) | 1.3±0.2 (aM) | |
球囊菌门 Glomeromycota | 1.0±0.3 (a) | 0.4±0.1 (b) | 0.9±0.2 (a) | 0.5±0.1 (ab) | |
绿藻门 Chlorophyta | 0.8±0.1 (a) | 0.3±0.1 (b) | 0.2±0.0 (b) | 0.2±0.0 (b) | |
丝足虫门 Cercozoa | 0.4±0.1 (abM) | 0.2±0.1 (bM) | 0.6±0.0 (a) | 0.5±0.1 (a) | |
其他 Others | 19.0±2.8 (b) | 50.2±8.6 (a) | 19.0±1.4 (b) | 25.7±3.4 (b) | |
纲 Class | 粪壳菌纲 Sordariomycetes | 30.4±8.2 (a) | 14.0±0.7 (b) | 21.5±0.6 (ab) | 22.1±2.7 (ab) |
散囊菌纲 Eurotiomycetes | 4.4±1.3 (c) | 5.0±0.9 (c) | 20.8±2.8 (a) | 14.0±2.6 (b) | |
座囊菌纲 Dothideomycetes | 10.0±4.0 (aMN) | 3.3±0.5 (aM) | 4.4±1.1 (a) | 3.2±1.2 (aN) | |
毛霉菌亚门未定名纲 Mucoromycotina_cls_Incertae_sedis | 0.6±0.2 (b) | 1.3±0.5 (ab) | 1.9±1.1 (ab) | 3.5±1.2 (a) | |
其他 Others | 32.2±5.8 (b) | 57.9±7.7 (a) | 34.3±3.6 (b) | 36.9±3.2 (b) | |
目 Order | 散囊菌目 Eurotiales | 1.4±0.4 (b) | 1.7±0.4 (b) | 17.8±3.7 (aM) | 11.8±2.5 (aM) |
格孢腔菌目 Pleosporales | 5.3±1.9 (aMN) | 1.8±0.2 (aM) | 3.0±1.0 (a) | 1.8±0.3 (aN) | |
煤炱目 Capnodiales | 4.3±2.0 (a) | 0.9±0.2 (b) | 1.0±0.6 (b) | 1.0±0.2 (b) | |
其他 Others | 45.1±10.9 (b) | 74.3±2.0 (aM) | 46.8±5.7 (b) | 55.5±4.8 (abM) |
Table 1 Relative abundance of soil fungi at the phylum, class and order levels in the soybean crop field %
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 子囊菌门 Ascomycota | 52.0±11.1 (a) | 27.2±1.3 (bM) | 58.7±1.0 (a) | 46.2±5.3 (abM) |
接合菌门 Zygomycota | 4.4±1.5 (b) | 4.0±0.9 (b) | 7.5±1.2 (ab) | 9.0±1.9 (a) | |
壶菌门 Chytridiomycota | 0.8±0.3 (a) | 0.5±0.1 a(M) | 0.7±0.3 (a) | 1.3±0.2 (aM) | |
球囊菌门 Glomeromycota | 1.0±0.3 (a) | 0.4±0.1 (b) | 0.9±0.2 (a) | 0.5±0.1 (ab) | |
绿藻门 Chlorophyta | 0.8±0.1 (a) | 0.3±0.1 (b) | 0.2±0.0 (b) | 0.2±0.0 (b) | |
丝足虫门 Cercozoa | 0.4±0.1 (abM) | 0.2±0.1 (bM) | 0.6±0.0 (a) | 0.5±0.1 (a) | |
其他 Others | 19.0±2.8 (b) | 50.2±8.6 (a) | 19.0±1.4 (b) | 25.7±3.4 (b) | |
纲 Class | 粪壳菌纲 Sordariomycetes | 30.4±8.2 (a) | 14.0±0.7 (b) | 21.5±0.6 (ab) | 22.1±2.7 (ab) |
散囊菌纲 Eurotiomycetes | 4.4±1.3 (c) | 5.0±0.9 (c) | 20.8±2.8 (a) | 14.0±2.6 (b) | |
座囊菌纲 Dothideomycetes | 10.0±4.0 (aMN) | 3.3±0.5 (aM) | 4.4±1.1 (a) | 3.2±1.2 (aN) | |
毛霉菌亚门未定名纲 Mucoromycotina_cls_Incertae_sedis | 0.6±0.2 (b) | 1.3±0.5 (ab) | 1.9±1.1 (ab) | 3.5±1.2 (a) | |
其他 Others | 32.2±5.8 (b) | 57.9±7.7 (a) | 34.3±3.6 (b) | 36.9±3.2 (b) | |
目 Order | 散囊菌目 Eurotiales | 1.4±0.4 (b) | 1.7±0.4 (b) | 17.8±3.7 (aM) | 11.8±2.5 (aM) |
格孢腔菌目 Pleosporales | 5.3±1.9 (aMN) | 1.8±0.2 (aM) | 3.0±1.0 (a) | 1.8±0.3 (aN) | |
煤炱目 Capnodiales | 4.3±2.0 (a) | 0.9±0.2 (b) | 1.0±0.6 (b) | 1.0±0.2 (b) | |
其他 Others | 45.1±10.9 (b) | 74.3±2.0 (aM) | 46.8±5.7 (b) | 55.5±4.8 (abM) |
Figure 2 Effects of warming and straw application on the relative abundance of soil fungi at the phylum, class and order levels in the winter wheat crop field
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 油壶菌门 Olpidiomycota | 0.7±0.2 (aM) | 0.3±0.2 (abM) | 0.2±0.1 (b) | 0.2±0.1 (b) |
球囊菌门 Glomeromycota | 0.0±0.0 (b) | 0.10±0.0 (a) | 0.0±0.0 (b) | 0.0±0.0 (b) | |
其他 Others | 19.2±2.8 (b) | 22.3±2.2 (ab) | 23.0±2.1 (ab) | 30.5±5.1 (a) | |
纲 Class | 油壶菌纲 Olpidiomycetes | 0.7±0.1 (a) | 0.3±0.2 (ab) | 0.2±0.1 (b) | 0.2±0.1 (b) |
其他 Others | 33.0±3.3 (aM) | 44.3±3.9 (a) | 37.4±3.3 (a) | 46.7±6.7 (aM) | |
目 Order | 炭角菌目 Xylariales | 10.4±2.1 (aM) | 4.9±2.9 (abM) | 5.4±1.6 (ab) | 1.9±0.7 (b) |
粪壳菌目 Sordariales | 1.4±0.4 (b) | 2.2±0.6 (ab) | 3.4±0.4 (a) | 2.5±0.7 (ab) |
Table 2 Relative abundance of soil fungi at the phylum, class and order levels in the winter wheat crop field %
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 油壶菌门 Olpidiomycota | 0.7±0.2 (aM) | 0.3±0.2 (abM) | 0.2±0.1 (b) | 0.2±0.1 (b) |
球囊菌门 Glomeromycota | 0.0±0.0 (b) | 0.10±0.0 (a) | 0.0±0.0 (b) | 0.0±0.0 (b) | |
其他 Others | 19.2±2.8 (b) | 22.3±2.2 (ab) | 23.0±2.1 (ab) | 30.5±5.1 (a) | |
纲 Class | 油壶菌纲 Olpidiomycetes | 0.7±0.1 (a) | 0.3±0.2 (ab) | 0.2±0.1 (b) | 0.2±0.1 (b) |
其他 Others | 33.0±3.3 (aM) | 44.3±3.9 (a) | 37.4±3.3 (a) | 46.7±6.7 (aM) | |
目 Order | 炭角菌目 Xylariales | 10.4±2.1 (aM) | 4.9±2.9 (abM) | 5.4±1.6 (ab) | 1.9±0.7 (b) |
粪壳菌目 Sordariales | 1.4±0.4 (b) | 2.2±0.6 (ab) | 3.4±0.4 (a) | 2.5±0.7 (ab) |
Figure 3 Box and whisker plot of the α diversity of soil fungi under the different warming and straw application treatments in the soybean crop field The different letters represent significant (P<0.05) differences between the treatments. The letter M or N represents marginally significant (0.50<P<0.10) differences between the treatments. The number of samples for a treatment was three. The same below
Figure 4 Box and whisker plot of the α diversity of soil fungi under the different warming and straw application treatments in the winter wheat crop field
[1] |
BAKHT J, SHAFI M, JAN M T, et al., 2009. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production[J]. Soil and Tillage Research, 104(2): 233-240.
DOI URL |
[2] |
BRIDGHAM SD, PASTOR J, UPDEGRAFF K, et al., 1999. Ecosystem control over temperature and energy flux in northern peatlands[J]. Ecological Applications, 9(4): 1345-1358.
DOI URL |
[3] |
CAO Y, CHAI Y F, JIAO S, et al., 2022. Bacterial and fungal community assembly in relation to soil nutrients and plant growth across different ecoregions of shrubland in Shaanxi, northwestern China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2022.104385.
DOI |
[4] |
CASTRO H F, CLASSEN A T, AUSTIN E E, et al., 2010. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 76(4): 999-1007.
DOI URL |
[5] |
CHAHAL I, VAN EERD L L, 2018. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate[J]. Plant and Soil, 427(1-2): 351-367.
DOI URL |
[6] |
DEANGELIS K M, POLD G, TOPÇUOGLU B D, 2015. Long-term forest soil warming alters microbial communities in temperate forest soils[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2015.00104.
DOI |
[7] |
EDGAR R C, 2013. UPARSE, highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-999.
DOI URL |
[8] |
FENG J, WANG C, LEI J, et al., 2020. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J]. Microbiome, 8(1): 3.
DOI URL |
[9] |
FENG X J, SIMPSON M J, 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality[J]. Soil Biology and Biochemistry, 41(4): 804-812.
DOI URL |
[10] |
GOVAERTS B, FUENTES M, MEZZALAMA M, et al., 2007. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements[J]. Soil and Tillage Research, 94(1): 209-219.
DOI URL |
[11] |
GUO N, LI L, CUI J Q, et al., 2021. Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021. 103930.
DOI |
[12] |
HABTEWOLD J Z, HELGASON B L, YANNI S F, et al., 2021. Warming effects on the structure of bacterial and fungal communities in diverse soils[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.103973.
DOI |
[13] |
HUANG F Y, LIU Z H, MOU H Y, et al., 2019. Effects of different long-term farmland mulching practices on the loessial soil fungal community in a semiarid region of China[J]. Applied Soil Ecology, 137: 111-119.
DOI URL |
[14] |
JI L, SHEN F Y, LIU Y, et al., 2022. Contrasting altitudinal patterns and co-occurrence networks of soil bacterial and fungal communities along soil depths in the cold-temperate montane forests of China[J]. Catena, DOI: 10.1016/j.catena.2021.105844.
DOI |
[15] |
JIANG S J, PAN J B, SHI G X, et al., 2017. Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan Plateau[J]. Symbiosis, 74: 159-166.
DOI URL |
[16] | JOHNSTON E R, HATT J K, HE Z, et al., 2019. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(30): 15096-15105. |
[17] |
LOZUPONE C, LLADSER M E, KNIGHTS D, et al., 2011. UniFrac: An effective distance metric for microbial community comparison[J]. ISME Journal, 5(2): 169-172.
DOI URL |
[18] |
LUO Y Q, WAN S Q, HUI D F, et al., 2001. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 413(6856): 622-625.
DOI URL |
[19] |
MORRISON E W, PRINGLE A, VAN DIEPEN L T A, et al., 2019. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks[J]. Soil Biology and Biochemistry, 132(4): 120-130.
DOI URL |
[20] | OSTBERG S, LUCHT W, SCHAPHOFF S, et al., 2013. Critical impacts of global warming on land ecosystems[J]. Earth System Dynamics Discussions, 4(2): 541-565. |
[21] |
QIN Z C, HUANG Y, ZHUANG Q L, 2013. Soil organic carbon sequestration potential of cropland in China[J]. Global Biogeochemical Cycles, 27(3): 711-722.
DOI URL |
[22] |
RINKE C, SCHWIENTEK P, SCZYRBA A, et al., 2013. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 499(7459): 431-437.
DOI URL |
[23] | RINNAN R, MICHELSEN A, BÅÅTH E, et al., 2007. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology 13( 1): 28-39. |
[24] |
RINNAN R, MICHELSEN A, JONASSON S, 2008. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem[J]. Applied Soil Ecology, 39(3): 271-281.
DOI URL |
[25] |
RINNAN R, STARK S, TOLVANEN A, 2009. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. Journal of Ecology, 97(4): 788-800.
DOI URL |
[26] |
SCHINDLBACHER A, RODLER A, KUFFNER M, et al., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology and Biochemistry, 43(7): 1417-1425.
DOI URL |
[27] |
STREIT K, HAGEDORN F, HILTBRUNNER D, et al., 2014. Soil warming alters microbial substrate use in alpine soils[J]. Global Change Biology, 20(4): 1327-1338.
DOI URL |
[28] |
STROM N, HU W, HAARITH D, et al., 2020. Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2019.103388.
DOI |
[29] |
SUN C X, WANG D, SHEN X B, et al., 2020. Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology[J]. Agriculture, Ecosystems & Environment, DOI: 10.1016/j.agee.2020.106952.
DOI |
[30] |
THANGARAJAN R, BOLAN NS, TIAN G, et al., 2013. Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment, 465: 72-96.
DOI URL |
[31] |
TU C, LI F D, QIAO Y F, et al., 2017. Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain[J]. Journal of Integrative Agriculture, 16(4): 967-979.
DOI URL |
[32] |
WALL G W, KIMBALL B A, WHITE J W, et al., 2011. Gas exchange and water relations of spring wheat under full-season infrared warming[J]. Global Change Biology, 17(6): 2113-2133.
DOI URL |
[33] |
WANG H, LI J Q, CHEN H Y, et al., 2022. Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.150197.
DOI |
[34] |
WANG L W, WANG C, FENG F Y, et al., 2021. Effect of straw application time on soil properties and microbial community in the Northeast China Plain[J]. Journal of Soils and Sediments, 21(9): 3137-3149.
DOI URL |
[35] |
WEI X T, SHI Y, QIN F W, et al., 2021. Effects of experimental warming, precipitation increase and their interaction on AM fungal community in an alpine grassland of the Qinghai-Tibetan Plateau[J]. European Journal of Soil Biology, DOI: 10.1016/j.ejsobi.2020.103272.
DOI |
[36] |
YANG H S, LI Y F, ZHAI S L, et al., 2020. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2020.103660.
DOI |
[37] |
YUAN H Z, GE T D, ZHOU P, et al., 2013. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils[J]. Journal of Soils and Sediments, 13(5): 877-886.
DOI URL |
[38] |
ZHANG M M, ZHAO G X, LI Y Z, et al., 2021. Straw incorporation with ridge-furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.104038.
DOI |
[39] |
ZHEN W C, WANG S T, ZHANG C Y, et al., 2009. Influence of maize straw amendment on soil-borne diseases of winter wheat[J]. Frontiers of Agriculture in China, 3(1): 7-12.
DOI URL |
[40] |
ZHOU Y J, JIA X, HAN L, et al., 2021. Fungal community diversity in soils along an elevation gradient in a Quercus aliena var. acuteserrata forest in Qinling Mountains, China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.104104.
DOI |
[41] | 陈书涛, 桑琳, 张旭, 等, 2016. 增温及秸秆施用对冬小麦田土壤呼吸和酶活性的影响[J]. 环境科学, 37(2): 703-709. |
CHEN S T, SANG L, ZHANG X, et al., 2016. Effects of warming and straw application on soil respiration and enzyme activity in a winter wheat cropland[J]. Environmental Science, 37(2): 703-709. | |
[42] | 李欣, 李峰科, 芦光新, 等, 2017. 模拟增温对高寒草甸土壤三大类微生物数量的影响[J]. 青海畜牧兽医杂志, 47(2): 6-11. |
LI X, LI F K, LU G X, et al., 2017. Effects of simulated warming on the quantity of three types of microorganisms in alpine meadow soil[J]. Qinghai Journal of Animal Husbandry and Veterinary Medicine, 47(2): 6-11. | |
[43] |
王军, 王冠钦, 李飞, 等, 2018. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 42(1): 116-125.
DOI |
WANG J, WANG G, LI F, et al., 2018. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 42(1): 116-125.
DOI |
|
[44] | 姚世庭, 芦光新, 邓晔, 等, 2021. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 30(7): 1404-1411. |
YAO S T, LU G X, DENG Y, et al., 2021. Effects of simulated warming on soil fungal community composition and diversity[J]. Ecology and Environmental Sciences, 30(7): 1404-1411. |
[1] | HOU Hui, YAN Peixuan, XIE Qinmi, ZHAO Hongliang, PANG Danbo, CHEN Lin, LI Xuebin, HU Yang, LIANG Yongliang, NI Xilu. Characterization of Arbuscular Mycorrhizal Fungal Community Diversity in the Rhizosphere Soils of Prunus mongolica Scrub of Helan Mountain [J]. Ecology and Environment, 2023, 32(5): 857-865. |
[2] | LIU Ning, LIU Yang, XU Jingping, SONG Huiping, FENG Zhengjun, CHENG Fangqin. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Water Purification in Constructed Wetlands [J]. Ecology and Environment, 2022, 31(7): 1434-1441. |
[3] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[4] | YANG Shifu, MA Lingling, CHEN Yunzhi, TANG Xuli. Characteristics of Soil Bacteria Community in Forests Along Monsoon Evergreen Broadleaved Forest Successional Sequence in Dinghushan National Nature Reserve [J]. Ecology and Environment, 2022, 31(12): 2275-2282. |
[5] | XUE Wenkai, ZHU Pan, DE Ji, GUO Xiaofang. Study on the Temporal and Spatial Characteristics of the Dominant Species of Cultivable Filamentous Fungi in Nam Co Lake [J]. Ecology and Environment, 2022, 31(12): 2331-2340. |
[6] | ZHANG Yangyang, ZHOU Qinghui, XU Jiaoyang, WEI Ming, CHEN Jihao, HE Wei, WANG Pengcheng, YAN Zhaogui. Effects of Forest Ages on the Diversity of Understory Plants and Soil Seed Bank of Pinus massoniana Plantations [J]. Ecology and Environment, 2021, 30(11): 2121-2129. |
[7] | WANG Qi, ZHANG Feng, ZHAO Mengli, ZHANG Xinyu, ZHANG Jun. Effects of Grazing Intensity Community Composition and Inter-species Relationships of Stipa breviflora Desert Steppe, Inner Mongolia, China [J]. Ecology and Environment, 2021, 30(10): 1961-1967. |
[8] | CHA Lijuan, ZHOU Dandan, FENG Hongjuan, ZHAO Shuyuan, FENG Kaiping. Research on the Bioaccumulation Characteristics of Two Kinds of Wild Edible Fungi to Soil Heavy Metals [J]. Ecology and Environment, 2021, 30(10): 2093-2099. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn