Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2275-2282.DOI: 10.16258/j.cnki.1674-5906.2022.12.001
YANG Shifu1,2(), MA Lingling1,2, CHEN Yunzhi1,2, TANG Xuli1,*(
)
Received:
2022-04-12
Online:
2022-12-18
Published:
2023-02-15
Contact:
TANG Xuli
杨世福1,2(), 马玲玲1,2, 陈芸芝1,2, 唐旭利1,*(
)
通讯作者:
唐旭利
作者简介:
杨世福(1998年生),男,硕士,主要研究方向为生态系统生态学。E-mail: yangshifu@scbg.ac.cn
基金资助:
CLC Number:
YANG Shifu, MA Lingling, CHEN Yunzhi, TANG Xuli. Characteristics of Soil Bacteria Community in Forests Along Monsoon Evergreen Broadleaved Forest Successional Sequence in Dinghushan National Nature Reserve[J]. Ecology and Environment, 2022, 31(12): 2275-2282.
杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.001
指标 Indexes | 马尾松林 Pine forest (PF) | 混交林 Pine and broadleaved mixed forest (MF) | 阔叶林 Monsoon-evergreen broadleaved forest (BF) |
---|---|---|---|
土壤有机碳质量分数 w(SOC)/(g∙kg−1) | 24.17±1.20b | 29.76±1.77a | 32.81±1.75a |
全氮质量分数 w(TN)/(g∙kg−1) | 2.3±0.10b | 3.18±0.13a | 3.35±0.13a |
全磷质量分数 w(TP)/(g∙kg−1) | 0.18±0.01b | 0.24±0.01a | 0.26±0.01a |
硝态氮质量分数 w(NO3−-N)/(mg∙kg−1) | 11.08±1.06a | 13.64±2.40a | 18.54±3.75a |
铵态氮质量分数 w(NH4+-N)/(mg∙kg−1) | 6.69±0.57b | 9.76±2.00ab | 11.96±0.83a |
有效磷质量分数 w(AP)/(mg∙kg−1) | 1.00±0.20b | 1.66±0.26a | 1.84±0.14a |
pH值 pH value | 3.98±0.03a | 3.92±0.02ab | 3.86±0.03b |
土壤含水量 SWC/% | 21.99±1.21b | 30.88±0.72a | 31.08±1.26a |
Table 1 Physicochemical properties in top soil (0-10 cm in depth) of three successional forests in the Dinghushan National Nature Reserve
指标 Indexes | 马尾松林 Pine forest (PF) | 混交林 Pine and broadleaved mixed forest (MF) | 阔叶林 Monsoon-evergreen broadleaved forest (BF) |
---|---|---|---|
土壤有机碳质量分数 w(SOC)/(g∙kg−1) | 24.17±1.20b | 29.76±1.77a | 32.81±1.75a |
全氮质量分数 w(TN)/(g∙kg−1) | 2.3±0.10b | 3.18±0.13a | 3.35±0.13a |
全磷质量分数 w(TP)/(g∙kg−1) | 0.18±0.01b | 0.24±0.01a | 0.26±0.01a |
硝态氮质量分数 w(NO3−-N)/(mg∙kg−1) | 11.08±1.06a | 13.64±2.40a | 18.54±3.75a |
铵态氮质量分数 w(NH4+-N)/(mg∙kg−1) | 6.69±0.57b | 9.76±2.00ab | 11.96±0.83a |
有效磷质量分数 w(AP)/(mg∙kg−1) | 1.00±0.20b | 1.66±0.26a | 1.84±0.14a |
pH值 pH value | 3.98±0.03a | 3.92±0.02ab | 3.86±0.03b |
土壤含水量 SWC/% | 21.99±1.21b | 30.88±0.72a | 31.08±1.26a |
Figure 2 Soil bacterial alpha diversity index of three successional forests in the Dinghushan National Nature Reserve Values are mean (n=8)±standard error; Different lowercase letters indicate significant differences (P<0.05). The same below
Figure 3 Bacterial community composition at phylum level (with relative abundance >1%) of three successional forests in the Dinghushan National Nature Reserve
Figure 4 Principal coordinates analysis (PCoA) of bacterial composition based of three successional forests in the Dinghushan National Nature Reserve ***: P<0.001; **: P<0.01; *: P<0.05. The same below
[1] |
BANNING N C, GLEESON D B, GRIGG A H, et al., 2011. Soil microbial community successional patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 77(17): 6158-6164.
DOI PMID |
[2] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 37(8): 852-857.
DOI PMID |
[3] |
CAO J B, HE X X, CHEN Y Q, et al., 2020. Leaf litter contributes more to soil organic carbon than fine roots in two 10-year-old subtropical plantations[J]. Science of the Total Environment, 704: 135341.
DOI URL |
[4] |
CHABRERIE O, LAVAL K, PUGET P, et al., 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France[J]. Applied Soil Ecology, 24(1): 43-56.
DOI URL |
[5] |
CHAI Y F, CAO Y, YUE M, et al., 2019. Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J]. Frontiers in Microbiology, 10: 00895.
DOI URL |
[6] |
CHEN S F, ZHOU Y Q, CHEN Y R, et al., 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): 884-890.
DOI PMID |
[7] |
CLEVELAND C C, NEMERGUT D R, SCHMID S K, et al., 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition[J]. Biogeochemistry, 82(3): 229-240.
DOI URL |
[8] |
CLINE L C, ZAK D R, 2015. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession[J]. Ecology, 96(12): 3374-3385.
PMID |
[9] |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541.
DOI URL |
[10] |
DENG J J, YIN Y, ZHU W X, et al., 2018. Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi Nature Reserve[J]. Frontiers in Microbiology, 9: 02874.
DOI URL |
[11] |
DUAN Y L, LIAN J, WANG L L, et al., 2021. Variation in soil microbial communities along an elevational gradient in alpine meadows of the Qilian Mountains, China[J]. Frontiers in Microbiology, 12: 684386.
DOI URL |
[12] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996.
DOI PMID |
[13] |
FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364.
DOI PMID |
[14] |
GUO Y Q, CHEN X T, WU Y Y, et al., 2018. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities[J]. Science of the Total Environment, 635: 598-606.
DOI URL |
[15] |
HUANG W J, LIU J X, WANG Y P, et al., 2013. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and Soil, 364(1-2): 181-191.
DOI URL |
[16] |
HUANG Y H, LI Y L, XIAO Y, et al., 2011. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in south China[J]. Forest Ecology and Management, 261(7): 1170-1177.
DOI URL |
[17] |
JIA G M, CAO J, WANG C Y, et al., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China[J]. Forest Ecology and Management, 217(1): 117-125.
DOI URL |
[18] |
JIANG S, XING Y J, LIU G C, et al., 2021. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests[J]. Soil Biology and Biochemistry, 161: 108393.
DOI URL |
[19] |
LIE Z Y, LIN W, HUANG W J, et al., 2019. Warming changes soil N and P supplies in model tropical forests[J]. Biology and Fertility of Soils, 55(7): 751-763.
DOI |
[20] |
LIU J, JIA X Y, YAN W N, et al., 2020. Changes in soil microbial community structure during long-term secondary succession[J]. Land Degradation and Development, 31(9): 1151-1166.
DOI URL |
[21] | LLADO S, LOPEZ-MONDEJAR R, BALDRIAN P, 2017. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change[J]. Microbiology and Molecular Biology Reviews, 81(2): e00063. |
[22] |
MAGOC T, SALZBERG S L, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[23] |
MORRISSEY E M, MAU R L, SCHWARTZ E, et al., 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 11(8): 1890-1899.
DOI URL |
[24] |
QU Z L, LIU B, MA Y, et al., 2020. The response of the soil bacterial community and function to forest succession caused by forest disease[J]. Functional Ecology, 34(12): 2548-2559.
DOI URL |
[25] |
REN C J, LIU W C, ZHAO F Z, et al., 2019. Soil bacterial and fungal diversity and compositions respond differently to forest development[J]. Catena, 181: 104071.
DOI URL |
[26] |
ROESCH L F, FULTHORPE R R, RIVA A, et al., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 1(14): 283-290.
DOI URL |
[27] |
ROUSK J, BAATH E, BROOKES P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 4(10): 1340-1351.
DOI URL |
[28] |
SHANG R G, LI S F, HUANG X B, et al., 2021. Effects of soil properties and plant diversity on soil microbial community composition and diversity during secondary succession[J]. Forests, 12(6): 805.
DOI URL |
[29] |
SMITH A P, MARIN-SPIOTTA E, BALSER T, 2015. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: A multiyear study[J]. Global Change Biology, 21(9): 3532-3547.
DOI PMID |
[30] |
TANG X L, WANG Y P, ZHOU G Y, et al., 2011. Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in Southern China[J]. Plant Ecology, 212(8): 1385-1395.
DOI URL |
[31] |
XIANG X J, SHI Y, YANG J, et al., 2014. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest[J]. Scientific Reports, 4: 3829.
DOI PMID |
[32] |
XU Y X, REN S Q, LIANG Y F, et al., 2021. Soil nutrient supply and tree species drive changes in soil microbial communities during the transformation of a multi-generation Eucalyptus plantation[J]. Applied Soil Ecology, 166: 103991.
DOI URL |
[33] |
YABE S, AIBA Y, SAKAI Y, et al., 2010. Thermosporothrix hazakensis gen. nov., sp nov., isolated from compost, description of Thermosporotrichaceae fam. nov within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 60: 1794-1801.
DOI URL |
[34] |
YAN B S, SUN L P, LI J J, et al., 2020. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China[J]. Geoderma, 364: 114199.
DOI URL |
[35] |
ZENG Q C, AN S S, LIU Y, 2017. Soil bacterial community response to vegetation succession after fencing in the grassland of China[J]. Science of the Total Environment, 609: 2-10.
DOI URL |
[36] |
ZHANG C, LIU G B, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 97: 40-49.
DOI URL |
[37] |
ZHANG Y G, CONG J, LU H, et al., 2015. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China[J]. Microbial Biotechnology, 8(4): 739-746.
DOI PMID |
[38] |
ZHOU Z H, WANG C K, JIANG L F, et al., 2017. Trends in soil microbial communities during secondary succession[J]. Soil Biology and Biochemistry, 115: 92-99.
DOI URL |
[39] | 邓娇娇, 周永斌, 殷有, 等, 2019. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 39(3): 997-1008. |
DENG J J, ZHOU Y B, YIN Y, et al., 2019. Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province, China[J]. Acta Ecologica Sinica, 39(3): 997-1008. | |
[40] | 方运霆, 莫江明, 彭少麟, 等, 2003. 森林演替在南亚热带森林生态系统碳吸存中的作用[J]. 生态学报, 23(9): 1685-1694. |
FANG Y T, MO J M, PENG S L, et al., 2003. Role of forest succession on carbon sequestration of forest ecoystems in lower subtropical China[J]. Acta Ecologica Sinica, 23(9): 1685-1694. | |
[41] | 李林, 周小勇, 黄忠良, 等, 2006. 鼎湖山植物群落α多样性与环境的关系[J]. 生态学报, 26(7): 2301-2307. |
LI L, ZHOU X Y, HANG Z L, et al., 2006. Study on the relationship between α diversity of plant community and environment on Dinghushan[J]. Acta Ecologica Sinica, 26(7): 2301-2307. | |
[42] | 易志刚, 蚁伟民, 周丽霞, 等, 2005. 鼎湖山主要植被类型土壤微生物生物量研究[J]. 生态环境, 14(5): 727-729. |
YI Z G, YI W M, ZHOU L X, et al., 2005. Soil microbial biomass of the main forests in Dinghushan Biosphere Reserve[J]. Ecology and Environmental Sciences, 14(5): 727-729. |
[1] | YANG Danli, LUO Ji, JIA Longyu, CHEN Yunfei. Historical Records of Pb Accumulation in Primary Succession Ecosystem of Hailuogou Glacier Retreat Area [J]. Ecology and Environment, 2022, 31(12): 2393-2402. |
[2] | WANG Hao, CHEN Yongjin, LIU Jiazhen, WAN Bo, ZHANG Li. Effects of Three Types Tamarix Shrubs Communities on Spatial Distribution of Soil Organic Carbon in the New Wetland of the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 9-16. |
[3] | LI Qiaoyu, ZHANG Xiaojing, CHEN Juan, LIU Yuan, LIU Jinchun, TAO Jianping. Landscape Distribution Pattern of Subalpine Color-leaved Forests and the Influence of Topographic Factors in Western Sichuan [J]. Ecology and Environment, 2021, 30(8): 1581-1588. |
[4] | WANG Yimin, TAO Yuechen, CHENG Zhiyuan, LI Bowen. Long-term Protective Effect of External-Soil Spray Seeding on Highway Cutting Slope [J]. Ecology and Environment, 2021, 30(8): 1724-1731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn