Ecology and Environment ›› 2021, Vol. 30 ›› Issue (11): 2244-2250.DOI: 10.16258/j.cnki.1674-5906.2021.11.015
• Research Articles • Previous Articles Next Articles
WU Hui1(), WU Chenglong1, ZHANG Shiying1,2, XIA Yunsheng1,2,*(
), ZHANG Naiming1,2, PU Shaocai1
Received:
2021-04-29
Online:
2021-11-18
Published:
2021-12-29
Contact:
XIA Yunsheng
吴慧1(), 吴程龙1, 张仕颖1,2, 夏运生1,2,*(
), 张乃明1,2, 普绍才1
通讯作者:
夏运生
作者简介:
吴慧(1997年生),女,硕士研究生。E-mail: 1364765752@qq.com
基金资助:
CLC Number:
WU Hui, WU Chenglong, ZHANG Shiying, XIA Yunsheng, ZHANG Naiming, PU Shaocai. Effects of Applying Organic-inorganic Modifiers on the Chemical Properties of Tin Tailings[J]. Ecology and Environment, 2021, 30(11): 2244-2250.
吴慧, 吴程龙, 张仕颖, 夏运生, 张乃明, 普绍才. 施用有机-无机改良剂对锡尾矿化学属性的影响[J]. 生态环境学报, 2021, 30(11): 2244-2250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.11.015
重金属形态 Heavy metal speciation | Cu | Ni | Pb | Cd | As |
---|---|---|---|---|---|
全量 Total amount/(mg∙kg-1) | 514 | 0.50 | 163 | 1.5 | 36.1 |
有效态 Effective state/(mg∙kg-1) | 17.09 | 0.33 | 1.66 | 0.64 | 0.47 |
Table 1 Mass fraction of heavy metals in test tailings
重金属形态 Heavy metal speciation | Cu | Ni | Pb | Cd | As |
---|---|---|---|---|---|
全量 Total amount/(mg∙kg-1) | 514 | 0.50 | 163 | 1.5 | 36.1 |
有效态 Effective state/(mg∙kg-1) | 17.09 | 0.33 | 1.66 | 0.64 | 0.47 |
改良剂Improver | pH | w(OM)/ % | w(TN)/ (g∙kg-1) | w(TP)/ (g∙kg-1) | w(TK)/ (g∙kg-1) |
---|---|---|---|---|---|
米糠 Rice bran | 5.8 | 52.1 | 22.6 | 10.6 | 15.2 |
蘑菇渣 Mmushroom residue | 8.5 | 32.4 | 12.1 | 15.3 | 18.9 |
钙镁磷肥 Calcium magnesium phosphate | 8.6 | — | — | 66.5 | — |
Table 2 Table 2 pH value and contents of the tested amendments
改良剂Improver | pH | w(OM)/ % | w(TN)/ (g∙kg-1) | w(TP)/ (g∙kg-1) | w(TK)/ (g∙kg-1) |
---|---|---|---|---|---|
米糠 Rice bran | 5.8 | 52.1 | 22.6 | 10.6 | 15.2 |
蘑菇渣 Mmushroom residue | 8.5 | 32.4 | 12.1 | 15.3 | 18.9 |
钙镁磷肥 Calcium magnesium phosphate | 8.6 | — | — | 66.5 | — |
改良剂 Improver | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
Cu | Ni | Pb | Cd | As | |
米糠 Rice bran | 27.7 | 4.5 | 6.1 | 0.15 | 0.62 |
蘑菇渣 Mushroom residue | 49 | 24 | 25.6 | 0.29 | 1.63 |
钙镁磷肥 Calcium magnesium phosphate | 22.5 | 16 | 23.3 | 0.14 | 9.47 |
Table 3 Heavy metal contents of the tested amendments
改良剂 Improver | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
Cu | Ni | Pb | Cd | As | |
米糠 Rice bran | 27.7 | 4.5 | 6.1 | 0.15 | 0.62 |
蘑菇渣 Mushroom residue | 49 | 24 | 25.6 | 0.29 | 1.63 |
钙镁磷肥 Calcium magnesium phosphate | 22.5 | 16 | 23.3 | 0.14 | 9.47 |
指标 Index | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
Cu | Cd | Ni | Pb | As | |
全量 Total amount | 514 | 1.5 | 0.5 | 163 | 36.1 |
GB I | 35 | 0.2 | 40 | 35 | 15 |
GB II | 50 | 0.3 | 40 | 250 | 20 |
GB III | 400 | 1 | 200 | 500 | 30 |
Table 4 Total content of heavy metals in tin tailings
指标 Index | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
Cu | Cd | Ni | Pb | As | |
全量 Total amount | 514 | 1.5 | 0.5 | 163 | 36.1 |
GB I | 35 | 0.2 | 40 | 35 | 15 |
GB II | 50 | 0.3 | 40 | 250 | 20 |
GB III | 400 | 1 | 200 | 500 | 30 |
Fig. 1 pH values of different treatments The different letters marked in the figure indicate significant differences (P<0.05), CK: no improver; RB+P0: 5% rice bran +0% calcium magnesium phosphate fertilizer; RB+P1: 5% rice bran+1% calcium magnesium phosphate fertilizer; RB+P2: 5% rice bran+2% calcium magnesium phosphate fertilizer; MR+P0: 5% mushroom residue+0% calcium magnesium phosphate fertilizer; MR+P1: 5% mushroom residue+1% calcium magnesium phosphate fertilizer; MR+P2: 5% mushroom residue+2% calcium magnesium phosphate fertilizer, the same below
改良剂处理 Improver treatment | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
HCl-Cu | HCl-Ni | DTPA-Pb | DTPA-Cd | NaH2PO3-As | |
CK | 17.09±0.12a | 0.33±0.03e | 1.66±0.06a | 0.64±0.04a | 0.47±0.02a |
RB+P0 | 10.83±0.04b | 0.38±0.03de | 0.61±0.01b | 0.20±0.02b | 0.37±0.01b |
RB+P1 | 10.22±0.15bc | 0.59±0.03ab | 0.53±0.02c | 0.20±0.01b | 0.26±0.01c |
RB+P2 | 9.86±0.09c | 0.62±0.02a | 0.36±0.02de | 0.20±0.02b | 0.18±0.00d |
MR+P0 | 7.03±0.58d | 0.45±0.03cd | 0.42±0.02d | 0.21±0.02b | 0.36±0.01b |
MR+P1 | 6.02±0.07e | 0.48±0.02c | 0.35±0.02de | 0.19±0.01b | 0.25±0.00c |
MR+P2 | 6.05±0.09e | 0.52±0.02bc | 0.29±0.01e | 0.19±0.01b | 0.16±0.01d |
有机改良剂 Organic modifier | *** | ** | *** | *** | *** |
钙镁磷肥 Calcium magnesium phosphate | *** | *** | *** | *** | *** |
有机改良剂×钙镁磷肥 Organic modifier×calcium magnesium phosphate | NS | ** | NS | NS | NS |
Table 5 Heavy metal contention in tin tailings of different treatments
改良剂处理 Improver treatment | w/(mg∙kg-1) | ||||
---|---|---|---|---|---|
HCl-Cu | HCl-Ni | DTPA-Pb | DTPA-Cd | NaH2PO3-As | |
CK | 17.09±0.12a | 0.33±0.03e | 1.66±0.06a | 0.64±0.04a | 0.47±0.02a |
RB+P0 | 10.83±0.04b | 0.38±0.03de | 0.61±0.01b | 0.20±0.02b | 0.37±0.01b |
RB+P1 | 10.22±0.15bc | 0.59±0.03ab | 0.53±0.02c | 0.20±0.01b | 0.26±0.01c |
RB+P2 | 9.86±0.09c | 0.62±0.02a | 0.36±0.02de | 0.20±0.02b | 0.18±0.00d |
MR+P0 | 7.03±0.58d | 0.45±0.03cd | 0.42±0.02d | 0.21±0.02b | 0.36±0.01b |
MR+P1 | 6.02±0.07e | 0.48±0.02c | 0.35±0.02de | 0.19±0.01b | 0.25±0.00c |
MR+P2 | 6.05±0.09e | 0.52±0.02bc | 0.29±0.01e | 0.19±0.01b | 0.16±0.01d |
有机改良剂 Organic modifier | *** | ** | *** | *** | *** |
钙镁磷肥 Calcium magnesium phosphate | *** | *** | *** | *** | *** |
有机改良剂×钙镁磷肥 Organic modifier×calcium magnesium phosphate | NS | ** | NS | NS | NS |
[1] |
ALVARENGAl P, GONALVES A P, FERNANDES R M, et al., 2009. Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics.[J]. Chemosphere, 74(10): 1292-1300.
DOI URL |
[2] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal (loid)s contaminated soils: To mobilize or to immobilize[J]. Journal of Hazardous Materials, 266: 141-166.
DOI URL |
[3] |
CHANG C S, SUNG J M, 2004. Nutrient uptake and yield responses of peanuts and rice to lime and fused magnesium phosphate in an acid soil[J]. Field Crops Research, 89(2-3): 319-325.
DOI URL |
[4] | CHEN G Q, ZENG G M, XIANG T U, et al., 2005. A novel biosorbent; characterization of the spent mushroom compost and its application for removal of heavy metals[J]. J Environ, 17(5): 756-760. |
[5] |
CHIU K K, YE Z H, WONG M H, 2006. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge[J]. Bioresource Technology, 97: 158-170.
DOI URL |
[6] |
STUMBEA D, CHICO M M, NICA V, 2019. Effects of waste deposit geometry on the mineralogical and geochemical composition of mine tailings[J]. Journal of Hazardous Materials, 368: 496-505.
DOI URL |
[7] |
LEE S H, JI W H, LEE W S, et al., 2014. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings[J]. Journal of Environmental Management, 139: 15-21.
DOI URL |
[8] |
LI Z Y, YANG S X, PENG X Z, et al., 2018. Field comparison of the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China[J]. International Journal of Phytoremediation, 20(12): 1264-1273.
DOI URL |
[9] |
LI X K, KANG J X, 2021. Status and Measures of Preventing and Controlling Environmental Risks in Tailing Impoundment[J]. IOP Conference Series: Earth and Environmental Science, DOI: 10.1088/1755-1315/621/1/012148.
DOI |
[10] | RODRÍGUEZ L, GÓMEZ R, SÁNCHEZ V, et al., 2016. Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings[J]. Environmental Science & Pollution Research International, 23(7): 46-54. |
[11] |
UDEIGWE T K, EZE P N, TEBOH J M, et al., 2011. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality[J]. Environment International, 37(1): 258-267.
DOI URL |
[12] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 81-83. |
BAO S D, 2000. Soil Agrochemical Analysis[M]. ThirdEdition. Beijing: China Agriculture Press: 81-83. | |
[13] | 曹心德, 魏晓欣, 代革联, 等, 2011. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 5(7): 1441-1453. |
CAO X D, WEI X X, DAI G L, et al., 2011. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soil: A review[J]. Chinese Journal of Environmental Engineering, 5(7): 1441-1453. | |
[14] | 陈甲斌, 2013. 尾矿资源调查评价与综合利用政策研究[D]. 北京: 中国地质大学. |
CHEN J B, 2013. Investigation and evaluation of tailings resources and policy research on comprehensive utilization[D]. Beijing: China University of Geosciences. | |
[15] | 丁苏苏, 李凯华, 黄珏瑛, 等, 2020. 含磷材料修复铅、镉污染农田土壤效果及影响因素研究进展[J]. 环境污染与防治, 42(7): 929-936. |
DING S S, LI K H, HUANG Y Y, et al., 2020. Research progress on the effects of phosphorus-containing materials in remediation of lead and cadmium contaminated farmland soils and influencing factors[J]. Environmental Pollution & Control, 42(7): 929-936. | |
[16] | 胡清秀, 卫智涛, 王洪媛, 2011. 双孢蘑菇渣菌堆肥及其肥效的研究[J]. 农业环境科学学报, 30(9): 1902-1909. |
HU Q X, WEI Z T, WANG H Y, 2011. Study on Agaricus bisporus slag fungus compost and its fertilizer efficiency[J]. Journal of Agro-Environment Science, 30(9): 1902-1909. | |
[17] | 李如艳, 崔红标, 刘笑生, 等, 2018. 模拟酸雨对磷酸二氢钾钝化污染土壤Cu、Cd、Pb和P释放的影响[J]. 环境工程学报, 12(1): 227-234. |
LI R Y, CUI H B, LIU X S, et al., 2018. The effect of simulated acid rain on the release of Cu, Cd, Pb and P from polluted soil by potassium dihydrogen phosphate[J]. Chinese Journal of Environmental Engineering, 12(1): 227-234. | |
[18] | 刘新梅, 田剑, 张昊, 等, 2021. 改良剂对复垦土壤团聚体组成及有机碳含量的影响[J]. 水土保持学报, 35(1): 326-333, 355. |
LIU X M, TIAN J, ZHANG H, et al., 2021. Effects of amendments on aggregate composition and organic carbon content of reclaimed soil[J]. Journal of Soil and Water Conservation, 35(1): 326-333, 355. | |
[19] | 舒冉君, 2018. 米糠与氧化钙、过磷酸钙联用钝化重金属铅镉污染土壤[D]. 广州: 广东工业大学. |
SU R J, 2018. Rice bran combined with calcium oxide and calcium superphosphate to passivate heavy metal lead and cadmium contaminated soil[D]. Guangzhou: Guangdong University of Technology. | |
[20] | 汪吉东, 张永春, 俞美香, 等, 2007. 不同有机无机肥配合施用对土壤活性有机质含量及pH值的影响[J]. 江苏农业学报, 23(6): 573-578. |
WANG J D, ZHANG Y C, YU X M, 2007. Effect of combined application of different organic and inorganic fertilizers on soil active organic matter content and pH value[J]. Jiangsu Journal of Agricultural Sciences, 23(6): 573-578. | |
[21] | 卫智涛, 周国英, 胡清秀, 2010. 食用菌菌渣利用研究现状[J]. 中国食用菌, 29(5): 3-6. |
WEI Z T, ZHOU G Y, HU Q X, 2010. Research status of the utilization of edible mushroom residues[J]. Edible Fungi of China, 29(5): 3-6. | |
[22] | 吴清清, 马军伟, 姜丽娜, 等, 2010. 鸡粪和垃圾有机肥对苋菜生长及土壤重金属积累的影响[J]. 农业环境科学学报, 29(7): 1302-1309. |
WU Q Q, MA J W, JIANG L N, et al., 2010. Effect of poultry and household garbage manure on the growth of Aamaranth tricolor L. and heavy metal accumulation in soils[J]. Journal of Agro-Environment Science, 29(7): 1302-1309. | |
[23] | 卫智涛, 周国英, 胡清秀, 2010. 食用菌菌渣利用研究现状[J]. 中国食用菌, 29(5): 3-6, 11. |
WEI Z T, ZHOU G Y, HU Q X, 2010. Current status of research on utilization of edible fungus residue[J]. Edible Fungi of China, 29(5): 3-6, 11. | |
[24] | 孙清斌, 尹春芹, 邓金锋, 等, 2019. 施用外源物对尾矿土壤种植胡枝子修复效应初探[J]. 土壤, 51(5): 986-994. |
SUN Q B, YING C Q, DENG J F, et al., 2019. Preliminary Study on the Effect of Exogenous Materials on the Remediation of Planting Lespedeza in Tailing Soil[J]. Soils, 51(5): 986-994. | |
[25] | 邢金峰, 仓龙, 任静华, 2019. 重金属污染农田土壤化学钝化修复的稳定性研究进展[J]. 土壤, 51(2): 224-234. |
XING J F, CANG L, REN J H, 2019. Research progress on stability of chemical passivation remediation of heavy metal contaminated farmland soil[J]. Soils, 51(2): 224-234. | |
[26] | 于广明, 宋传旺, 潘永战, 等, 2014. 尾矿坝安全研究的国外新进展及我国的现状和发展态势[J]. 岩石力学与工程学报, 33(S1): 3238-3248. |
YU G M, SONG C W, PANG Y Z, et al., 2014. New foreign developments of tailings dam safety research and my country's current situation and development trend[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1): 3238-3248. | |
[27] | 王正刚, 周望岩, 李永飞, 2008. 稻米及其副产品深加工技术[J]. 粮食加工, 33(4): 26-28. |
WANG Z G, ZHOU W Y, LI Y F, 2008. Deep processing technology of rice and its by-products[J]. Grain Processing, 33(4): 26-28. | |
[28] | 周相玉, 冯文强, 秦鱼生, 等, 2012. 镁、锰、活性炭和石灰对土壤pH及镉有效性的影响[J]. 水土保持学报, 26(6): 199-203, 208. |
ZHOU X Y, FENG W Q, QIN Y S, et al., 2012. Effects of magnesium, manganese, activated carbon and lime on soil pH and cadmium availability[J]. Journal of Soil and Water Conservation, 26(6): 199-203, 208. | |
[29] | 张晓君, 杨胜香, 段纯, 等, 2014. 蘑菇渣作为改良剂对铅锌尾矿改良效果研究[J]. 农业环境科学学报, 33(3): 526-531. |
ZHANG X J, YANG S X, DUAN C, et al., 2014. Study on the effect of mushroom residue as a modifier on the improvement of lead-zinc tailings[J]. Journal of Agro-Environment Science, 33(3): 526-531. | |
[30] | 邹富桢, 2016. 无机-有机混合改良剂对酸性多金属污染土壤的修复效应[D]. 广州: 华南农业大学. |
ZHOU F Z, 2016. The remediation effect of inorganic-organic mixed amendment on acidic polymetallic contaminated soil[D]. Guangzhou: South China Agricultural University. | |
[31] | 周武先, 何银生, 朱盈徽, 等, 2019. 生石灰和钙镁磷肥对酸化川党参土壤的改良效果[J]. 应用生态学报, 30(9): 3224-3232. |
ZHOU W S, HE Y S, ZHU Y W, et al., 2019. Effect of quicklime and calcium magnesium phosphate fertilizer on soil improvement of acidified codonopsis[J]. Chinese Journal of Applied Ecology, 30(9): 3224-3232. | |
[32] | 张文彦, 杨晓帆, 李琛, 2021. 云南2种色稻米糠营养成分及储存品质分析[J]. 粮食与饲料工业 (1): 23-26. |
ZHANG W Y, YANG X F, LI C, 2021. Analysis of nutrient composition and storage quality of two kinds of color rice bran in Yunnan[J]. Cereal & Feed Industry (1): 23-26. |
[1] | ZHANG Xingwang, XIE Yanping, WU Xiaomin, LI Yao, XIAO Shuping. Population Structure and Dynamic Characteristics of Wild Plant Species with Extremely Small Populations of Camptotheca acuminata in Mingxi, Fujian Province, China [J]. Ecology and Environment, 2023, 32(6): 1037-1044. |
[2] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[3] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[4] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[5] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[6] | ZHOU Shiqiang, Vanessa HULL, ZHANG Jindong, LIU Dian, XIE Hao, HUANG Jinyan, ZHANG Hemin. Comparison of Habitat Use Patterns between Wild Giant Pandas and Grazing Livestock [J]. Ecology and Environment, 2023, 32(2): 309-319. |
[7] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[8] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[9] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[10] | WANG Zhe, TIAN Shengni, ZHANG Yongmei, ZHANG Heyu, ZHOU Zhongze. Study on the Plant Community Characteristics of the Estuary of Pai River in Chaohu Lake [J]. Ecology and Environment, 2022, 31(9): 1823-1831. |
[11] | YUAN Chunming, YANG Guoping, GENG Yunfen, ZHANG Shanshan. Prediction of Population Dynamics of the Endangered Plant Pterospermum kingtungense Using Integral Projection Models [J]. Ecology and Environment, 2022, 31(8): 1530-1536. |
[12] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[13] | WANG Molei, LI Zhihui, CHEN Laiguo, GUO Songjun, LIU Ming, WANG Shuo, LU Haitao. Polybrominated Diphenyl Ethers in Flue Gas from Municipal Waste Incineration Plants and Surrounding Soil Pollution Characteristics [J]. Ecology and Environment, 2022, 31(8): 1582-1589. |
[14] | LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals [J]. Ecology and Environment, 2022, 31(8): 1657-1666. |
[15] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn