Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1473-1482.DOI: 10.16258/j.cnki.1674-5906.2025.09.014
• Review • Previous Articles Next Articles
ZHAO Wenqi1,2(), ZHANG Jiahua2, ZHANG Peng2, BAI Linyan2, YAO Fengmei1,*(
)
Received:
2025-03-05
Online:
2025-09-18
Published:
2025-09-05
赵文琪1,2(), 张佳华2, 张鹏2, 白林燕2, 姚凤梅1,*(
)
通讯作者:
*E-mail: yaofm@ucas.ac.cn
作者简介:
赵文琪(2002年生),女,硕士研究生,主要从事植被遥感研究。E-mail: zhaowenqi24@mails.ucas.ac.cn
基金资助:
CLC Number:
ZHAO Wenqi, ZHANG Jiahua, ZHANG Peng, BAI Linyan, YAO Fengmei. Progress of Vegetation Phenology Monitoring Technology and Remote Sensing Inversion Method[J]. Ecology and Environmental Sciences, 2025, 34(9): 1473-1482.
赵文琪, 张佳华, 张鹏, 白林燕, 姚凤梅. 植被物候监测技术与遥感反演方法研究进展[J]. 生态环境学报, 2025, 34(9): 1473-1482.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.014
名称 | 网址 | 参考文献 |
---|---|---|
2003-2015年CERN植物物候观测数据集 | | 宋创业等, |
中国物候观测网10站点4种代表性木本植物物候观测数据(1963-2018年) | | 戴君虎等, |
1963-2016年中国地面物候观测数据集 | 王焕炯, |
Table 1 China’s phenological observation station network system
名称 | 网址 | 参考文献 |
---|---|---|
2003-2015年CERN植物物候观测数据集 | | 宋创业等, |
中国物候观测网10站点4种代表性木本植物物候观测数据(1963-2018年) | | 戴君虎等, |
1963-2016年中国地面物候观测数据集 | 王焕炯, |
卫星 | 传感器 | 植被指数类型 | 时间分辨率 | 空间分辨率 | 参考文献 | |
---|---|---|---|---|---|---|
TERRA | MODIS | MOD13A1 EVI | 16 d | 500 m | Li et al., | |
MOD15A2H LAI | 8 d | 500 m | Li et al., | |||
MOD13Q1 NDVI | 16 d | 250 m | Zhang et al., | |||
NOAA | AVHRR | GIMMS NDVI | 15 d | 8 km | Yu et al., | |
OCO-2 | Three Grating Spectrometers | GOSIF SIF | 8 d | 0.05° | Li et al., | |
Sentinel-2A | MSI | NDVI | 5 d | 10 m | Thapa et al., | |
SPOT | VEGETATION | NDVI | 10 d | 1 km | Li et al., | |
Landsat | OLI | NDVI | 16 d | 30 m | Kowalski et al., | |
Envisat | MERIS | MTCI | 8 d | 4.6 km | Atkinson et al., | |
FY-4A | AGRI | NDVI | 15 min | 1/2/4 km | Lu et al., | |
Himawari-8 | AHI | NDVI | 10 min | 0.01° | Miura et al., | |
GCOM-C | SGLI | NDGI | 2-3 d | 250 m | Li et al., |
Table 2 Overview of satellites for vegetation phenology remote sensing monitoring
卫星 | 传感器 | 植被指数类型 | 时间分辨率 | 空间分辨率 | 参考文献 | |
---|---|---|---|---|---|---|
TERRA | MODIS | MOD13A1 EVI | 16 d | 500 m | Li et al., | |
MOD15A2H LAI | 8 d | 500 m | Li et al., | |||
MOD13Q1 NDVI | 16 d | 250 m | Zhang et al., | |||
NOAA | AVHRR | GIMMS NDVI | 15 d | 8 km | Yu et al., | |
OCO-2 | Three Grating Spectrometers | GOSIF SIF | 8 d | 0.05° | Li et al., | |
Sentinel-2A | MSI | NDVI | 5 d | 10 m | Thapa et al., | |
SPOT | VEGETATION | NDVI | 10 d | 1 km | Li et al., | |
Landsat | OLI | NDVI | 16 d | 30 m | Kowalski et al., | |
Envisat | MERIS | MTCI | 8 d | 4.6 km | Atkinson et al., | |
FY-4A | AGRI | NDVI | 15 min | 1/2/4 km | Lu et al., | |
Himawari-8 | AHI | NDVI | 10 min | 0.01° | Miura et al., | |
GCOM-C | SGLI | NDGI | 2-3 d | 250 m | Li et al., |
方法 | 原理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
Savitzky-Golay滤波 | 通过局部多项式拟合,对时间序列进行平滑处理,同时保留信号的趋势和极值 | 算法简单;易于实现;计算效率高 | 对数据中存在的异常值较为敏感;窗口的设置大小受主观经验的影响 | Savitzky et al., |
双Logistic函数 | 使用两个Logistic函数分别描述植被指数的上升(绿化阶段)和下降(枯萎阶段),形成一条平滑的生长季曲线 | 适合描述植被的绿化阶段和枯萎阶段 | 需要假定植被指数时间序列满足双Logistic函数的增长方式 | Beck et al., |
时间序列的谐波分析 | 基于傅里叶变换对时间序列进行谐波分析,提取主要频率成分,去除噪声和异常值 | 可以在植被指数时间序列的任何时刻再现无云图像,减少了数据量 | 没有客观的规则来控制参数的大小 | Roerink et al., |
非对称高斯分布 | 基于非对称高斯函数对时间序列数据拟合,在标准高斯分布的基础上引入了偏斜性,更好地捕捉不对称的物候变化 | 能够更好地捕捉植被生长的非对称性 | 难以明确识别时间序列中的真实最大值和最小值 | Jonsson et al., |
最大值合成 | 以指定的时间间隔对植被指数时间序列进行分组,从每组中提取最大值,同时排除其他时间点 | 能更好的捕捉生长季中的高绿度阶段;减少云层、阴影、降水等的干扰 | 忽略掉了生长季中的其他重要信息;对时间窗口的选择较为敏感且易受主观经验的影响 | Holben, |
最佳指数斜率提取 | 通过动态滑动周期和阈值判断,在NDVI时间序列中区分并抑制噪声,同时保留植被生长或突变的真实信号 | 噪声抑制能力强;能够保留真实变化 | 滑动周期的选择具有主观经验性;无法完全消除视角或大气干扰 | Viovy et al., |
Whittaker平滑 | 最小化观测数据与平滑曲线的残差平方和,并加入对曲线高阶差分的惩罚项,在抑制噪声的同时保持植被指数曲线的周期性 | 有灵活性和交叉验证的便利性 | 可能会出现平滑过渡导致信息丢失的现象 | Whittaker, |
空间内具有动态参数λ的加权Whittaker方法 | 基于Whittaker引入动态优化平滑参数λ和迭代权重更新机制实现高保真低粗糙度的重建曲线 | 适应不同区域多生长季低波动的植被指数数据 | 在模拟复杂噪声和处理关键点方面存在不足 | Kong et al., |
粒子滤波 | 通过模拟一组粒子,根据每个粒子的权重来近似植被指数曲线 | 有效处理噪声数据;能够较准确的提取一年多生长季物候 | 计算过程复杂;粒子权重不均衡 | De Bernardis et al., |
小波变换 | 通过母小波函数对植被指数时间序列进行多尺度分解,捕捉信号在时间和频率域的局部特征 | 能同时解析高频(年内季节变化)和低频(年际气候事件)信号 | 不同的小波基会影响结果的解读;尺度参数和平滑强度的选择需依据经验调整 | Martínez et al., |
离散傅里叶变换 | 使用傅里叶分析对植被指数时间序列的曲线进行频率分解,然后通过逆傅里叶变换重建时间域 | 用户输入少;能够有效分离周期性信号与非系统性噪声 | 需假设数据具有周期性;忽略高阶谐波可能遗漏高频信号 | Moody et al., |
高斯过程回归 | 基于贝叶斯非参数模型,假设数据服从高斯过程,通过协方差函数刻画时间序列的平滑性 | 灵活性强,可量化不确定性;适合非线性模式 | 计算量大,对超参数敏感 | Salinero-Delgado et al., |
Table 3 Fitting methods for remote sensing vegetation index data curve reconstruction
方法 | 原理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
Savitzky-Golay滤波 | 通过局部多项式拟合,对时间序列进行平滑处理,同时保留信号的趋势和极值 | 算法简单;易于实现;计算效率高 | 对数据中存在的异常值较为敏感;窗口的设置大小受主观经验的影响 | Savitzky et al., |
双Logistic函数 | 使用两个Logistic函数分别描述植被指数的上升(绿化阶段)和下降(枯萎阶段),形成一条平滑的生长季曲线 | 适合描述植被的绿化阶段和枯萎阶段 | 需要假定植被指数时间序列满足双Logistic函数的增长方式 | Beck et al., |
时间序列的谐波分析 | 基于傅里叶变换对时间序列进行谐波分析,提取主要频率成分,去除噪声和异常值 | 可以在植被指数时间序列的任何时刻再现无云图像,减少了数据量 | 没有客观的规则来控制参数的大小 | Roerink et al., |
非对称高斯分布 | 基于非对称高斯函数对时间序列数据拟合,在标准高斯分布的基础上引入了偏斜性,更好地捕捉不对称的物候变化 | 能够更好地捕捉植被生长的非对称性 | 难以明确识别时间序列中的真实最大值和最小值 | Jonsson et al., |
最大值合成 | 以指定的时间间隔对植被指数时间序列进行分组,从每组中提取最大值,同时排除其他时间点 | 能更好的捕捉生长季中的高绿度阶段;减少云层、阴影、降水等的干扰 | 忽略掉了生长季中的其他重要信息;对时间窗口的选择较为敏感且易受主观经验的影响 | Holben, |
最佳指数斜率提取 | 通过动态滑动周期和阈值判断,在NDVI时间序列中区分并抑制噪声,同时保留植被生长或突变的真实信号 | 噪声抑制能力强;能够保留真实变化 | 滑动周期的选择具有主观经验性;无法完全消除视角或大气干扰 | Viovy et al., |
Whittaker平滑 | 最小化观测数据与平滑曲线的残差平方和,并加入对曲线高阶差分的惩罚项,在抑制噪声的同时保持植被指数曲线的周期性 | 有灵活性和交叉验证的便利性 | 可能会出现平滑过渡导致信息丢失的现象 | Whittaker, |
空间内具有动态参数λ的加权Whittaker方法 | 基于Whittaker引入动态优化平滑参数λ和迭代权重更新机制实现高保真低粗糙度的重建曲线 | 适应不同区域多生长季低波动的植被指数数据 | 在模拟复杂噪声和处理关键点方面存在不足 | Kong et al., |
粒子滤波 | 通过模拟一组粒子,根据每个粒子的权重来近似植被指数曲线 | 有效处理噪声数据;能够较准确的提取一年多生长季物候 | 计算过程复杂;粒子权重不均衡 | De Bernardis et al., |
小波变换 | 通过母小波函数对植被指数时间序列进行多尺度分解,捕捉信号在时间和频率域的局部特征 | 能同时解析高频(年内季节变化)和低频(年际气候事件)信号 | 不同的小波基会影响结果的解读;尺度参数和平滑强度的选择需依据经验调整 | Martínez et al., |
离散傅里叶变换 | 使用傅里叶分析对植被指数时间序列的曲线进行频率分解,然后通过逆傅里叶变换重建时间域 | 用户输入少;能够有效分离周期性信号与非系统性噪声 | 需假设数据具有周期性;忽略高阶谐波可能遗漏高频信号 | Moody et al., |
高斯过程回归 | 基于贝叶斯非参数模型,假设数据服从高斯过程,通过协方差函数刻画时间序列的平滑性 | 灵活性强,可量化不确定性;适合非线性模式 | 计算量大,对超参数敏感 | Salinero-Delgado et al., |
软件 | 主要软件包 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
QGIS | QPhenoMetrics | 可通过图形界面提取物候期;可评估图像的植被指数质量;软件免费且开源 | 仅基于NDVI和EVI数据,缺乏普适性 | Duarte et al., |
MATLAB | TIMESAT | 支持图形界面操作,便于用户进行交互式分析 | 数据预处理过程较为繁琐 | Jönsson et al., |
PhenoSat | 提取主要生长季七个物候阶段的信息,可以记录双生长季物候;允许选择年度时间序列子区间和感兴趣的区域 | 验证仅针对葡萄牙葡萄园和山地草场,缺乏对极端气候或复杂植被的验证 | Rodrigues et al., | |
R | phenopix | 除遥感数据外,还可基于物候相机网络提取植被物候指标 | 不适用于高时间分辨率的数据,拟合曲线可能无法有效捕捉物候转折点 | Filippa et al., |
CropPhenology | 利用Zadoks尺度上物候指标的定义计算15个物候期,能够明确表征谷物作物的生长情况 | 物候指标定义依赖于南澳大利亚种植区作物的生长特征;算法仅基于NDVI,无法全面反映不同植被指数所能捕捉的作物生长过程差 | Araya et al., | |
phenofit | 先后进行两次植被指数的曲线拟合,对于一年多生长季地区物候的提取精度较高 | 算法默认参数主要针对温带季节性植被优化,对热带常绿林和高纬度冻原的物候提取精度可能下降 | Kong et al., | |
Python | pyPhenology | 基于NumPy,拥有高效的季节性分析的能力,适用于大范围的地理区域 | 需要用户手动设置合适的阈值,易受主观经验影响 | David Taylor, |
PhenoForecaster | 能够利用多变量物候气候模型来预测2320种被子植物开花期 | 未考虑种群间物候响应的潜在异质性,而是代表了各物种样本的平均值 | Park et al., | |
PhenoPY | 能更好的处理高分辨率的遥感数据;适用于植物生长动力学的研究 | 专注于SIF数据,对其它类型的遥感数据支持有限 | Chen et al., |
Table 4 Characteristics of commonly used software for vegetation phenology information extraction
软件 | 主要软件包 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
QGIS | QPhenoMetrics | 可通过图形界面提取物候期;可评估图像的植被指数质量;软件免费且开源 | 仅基于NDVI和EVI数据,缺乏普适性 | Duarte et al., |
MATLAB | TIMESAT | 支持图形界面操作,便于用户进行交互式分析 | 数据预处理过程较为繁琐 | Jönsson et al., |
PhenoSat | 提取主要生长季七个物候阶段的信息,可以记录双生长季物候;允许选择年度时间序列子区间和感兴趣的区域 | 验证仅针对葡萄牙葡萄园和山地草场,缺乏对极端气候或复杂植被的验证 | Rodrigues et al., | |
R | phenopix | 除遥感数据外,还可基于物候相机网络提取植被物候指标 | 不适用于高时间分辨率的数据,拟合曲线可能无法有效捕捉物候转折点 | Filippa et al., |
CropPhenology | 利用Zadoks尺度上物候指标的定义计算15个物候期,能够明确表征谷物作物的生长情况 | 物候指标定义依赖于南澳大利亚种植区作物的生长特征;算法仅基于NDVI,无法全面反映不同植被指数所能捕捉的作物生长过程差 | Araya et al., | |
phenofit | 先后进行两次植被指数的曲线拟合,对于一年多生长季地区物候的提取精度较高 | 算法默认参数主要针对温带季节性植被优化,对热带常绿林和高纬度冻原的物候提取精度可能下降 | Kong et al., | |
Python | pyPhenology | 基于NumPy,拥有高效的季节性分析的能力,适用于大范围的地理区域 | 需要用户手动设置合适的阈值,易受主观经验影响 | David Taylor, |
PhenoForecaster | 能够利用多变量物候气候模型来预测2320种被子植物开花期 | 未考虑种群间物候响应的潜在异质性,而是代表了各物种样本的平均值 | Park et al., | |
PhenoPY | 能更好的处理高分辨率的遥感数据;适用于植物生长动力学的研究 | 专注于SIF数据,对其它类型的遥感数据支持有限 | Chen et al., |
[1] |
AASEN H, KIRCHGESSNER N, WALTER A, et al., 2020. PhenoCams for field phenotyping: Using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits[J]. Frontiers in Plant Science, 11: 593.
DOI PMID |
[2] | ADOLE T, DASH J, ATKINSON P M, 2018. Characterising the land surface phenology of Africa using 500 m MODIS EVI[J]. Applied Geography, 90: 187-199. |
[3] | ARAYA S, OSTENDORF B, LYLE G, et al., 2018. CropPhenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery[J]. Ecological Informatics, 46: 45-56. |
[4] | ATKINSON P M, JEGANATHAN C, DASH J, et al., 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology[J]. Remote Sensing of Environment, 123: 400-417. |
[5] | BAI L, TIAN L, REN Z G, et al., 2024. Climate warming advances plant reproductive phenology in China’s northern grasslands[J]. Journal of Plant Ecology, 17(6): 225-240. |
[6] | BALDOCCHI D, 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 20(12): 3600-3609. |
[7] | BECK P S A, ATZBERGER C, HØGDA K A, et al., 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI[J]. Remote Sensing of Environment, 100(3): 321-334. |
[8] | BOLTON D K, GRAY J M, MELAA E K, et al., 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 240: 111685. |
[9] | CAO M Y, SUN Y, JIANG X, et al., 2021. Identifying leaf phenology of deciduous broadleaf forests from PhenoCam images using a convolutional neural network regression method[J]. Remote Sensing, 13(12): 2331-2350. |
[10] | CAPARROS-SANTIAGO J A, RODRIGUEZ-GALIANO V, DASH J, 2021. Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 171: 330-347. |
[11] |
CARADONNA P J, ILER A M, INOUYE D W, 2014. Shifts in flowering phenology reshape a subalpine plant community[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4916-4921.
DOI PMID |
[12] | CHEN J, JÖNSSON P, TAMURA M, et al., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 91(3-4): 332-344. |
[13] |
CHEN X G, HUANG Y F, NIE C, et al., 2022. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms[J]. Scientific Data, 9: 427.
DOI PMID |
[14] | CHUINE I, COUR P, ROUSSEAU D D, 1999. Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling[J]. Plant, Cell and Environment, 22(1): 1-13. |
[15] | DAVID TAYLOR S, 2018. pyPhenology: A python framework for plant phenology modelling[J]. Journal of Open Source Software, 3(27): 827. |
[16] | DE BERNARDIS C G, VICENTE-GUIJALBA F, MARTINEZ-MARIN T, et al., 2015. Estimation of key dates and stages in rice crops using dual-polarization SAR time series and a particle filtering approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3): 1008-1018. |
[17] | DUARTE L, TEODORO A C, MONTEIRO A T, et al., 2018. QPhenoMetrics: An open source software application to assess vegetation phenology metrics[J]. Computers and Electronics in Agriculture, 148: 82-94. |
[18] |
EILERS P H C, 2003. A perfect smoother[J]. Analytical Chemistry, 75(14): 3631-3636.
DOI PMID |
[19] | FILIPPA G, CREMONESE E, MIGLIAVACCA M, et al., 2016. Phenopix: A R package for image-based vegetation phenology[J]. Agricultural and Forest Meteorology, 220: 141-150. |
[20] | GAO F, ZHANG X Y, 2021. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities[J]. Journal of Remote Sensing (1): 96-109. |
[21] | GONG Z, GE W Y, GUO J Q, et al., 2024. Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 217: 149-164. |
[22] | GU L, POST W M, BALDOCCHI D D, et al., 2009. Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types[C]// NOORMETS A. Phenology of Ecosystem Processes. New York: Springer: 35-58. |
[23] | GUO Y H, CHEN S Z, FU Y H, et al., 2022. Comparison of multi-methods for identifying maize phenology using PhenoCams[J]. Remote Sensing, 14(2): 244. |
[24] | HOLBEN B N, 1986. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 7(11): 1417-1434. |
[25] | JIANG N, SHEN M G, YANG Z Y, 2024. Differential phenological responses to temperature among various stages of spring vegetation green-up[J]. Journal of Plant Ecology, 17(6): rtae063. |
[26] | JONSSON P, EKLUNDH L, 2002. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832. |
[27] | JÖNSSON P, EKLUNDH L, 2004. TIMESAT—a program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences, 30(8): 833-845. |
[28] | KATAL N, RZANNY M, MÄDER P, et al., 2022. Deep learning in plant phenological research: A systematic literature review[J]. Frontiers in Plant Science, 13: 805738. |
[29] |
KEENAN T F, RICHARDSON A D, 2015. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models[J]. Global Change Biology, 21(7): 2634-2641.
DOI PMID |
[30] | KLOSTERMAN S, MELAA E, WANG J A, et al., 2018. Fine-scale perspectives on landscape phenology from Unmanned Aerial Vehicle (UAV) photography[J]. Agricultural and Forest Meteorology, 248: 397-407. |
[31] | KONG D D, ZHANG Y Q, GU X H, et al., 2019. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 155: 13-24. |
[32] | KONG D D, MCVICAR T R, XIAO M Z, et al., 2022. Phenofit: An R package for extracting vegetation phenology from time series remote sensing[J]. Methods in Ecology and Evolution, 13(7): 1508-1527. |
[33] | KOWALSKI K, SENF C, HOSTERT P, et al., 2020. Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series[J]. International Journal of Applied Earth Observation and Geoinformation, 92: 102172. |
[34] | KRAMER K, 1994. Selecting a model to predict the onset of growth of Fagus sylvatica[J]. Journal of Applied Ecology, 31(1): 172-181. |
[35] | LI M Y, YANG W, KONDOH A, 2022. Improving remote estimation of vegetation phenology using GCOM-C/SGLI land surface reflectance data[J]. Remote Sensing, 14(16): 4027. |
[36] | LI M, WU Z F, QIN L J, et al., 2011. Extracting vegetation phenology metrics in Changbai Mountains using an improved logistic model[J]. Chinese Geographical Science, 21(3): 304-311. |
[37] | LI X J, DU H Q, ZHOU G M, et al., 2021. Phenology estimation of subtropical bamboo forests based on assimilated MODIS LAI time series data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 173: 262-277. |
[38] | LI Z R, LAI Q, BAO Y H, et al., 2023. Variations in phenology identification strategies across the Mongolian Plateau using multiple data sources and methods[J]. Remote Sensing, 15(17): 4237. |
[39] | LIU F, WANG X C, ZHANG Y C, et al., 2024. Novel metrics for assessing vegetation phenology from hydrological processes: Comparison with photosynthetic phenology[J]. Agricultural and Forest Meteorology, 358: 110245. |
[40] | LIU Y Q, LIU W H, YE T, et al., 2025. Incorporating climate data with machine learning can improve rice phenology estimation[J]. Environmental Research Letters, 20(2): 024020. |
[41] | LU J, HE T, SONG D X, et al., 2024. Using geostationary satellite observations to improve the monitoring of vegetation phenology[J]. Remote Sensing, 16(12): 2173. |
[42] | MA X L, ZHU X L, XIE Q Y, et al., 2022. Monitoring nature’s calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications[J]. Global Change Biology, 28(24): 7186-7204. |
[43] | MARTÍNEZ B, GILABERT M A, 2009. Vegetation dynamics from NDVI time series analysis using the wavelet transform[J]. Remote Sensing of Environment, 113(9): 1823-1842. |
[44] | MCDONOUGH M C, GALLINAT A S, ZIPF L, 2020. Low-cost observations and experiments return a high value in plant phenology research[J]. Applications in Plant Sciences, 8(6): e11338. |
[45] | MILLER-RUSHING A J, KATSUKI T, PRIMACK R B, et al., 2007. Impact of global warming on a group of related species and their hybrids: Cherry tree (Rosaceae) flowering at Mt. Takao, Japan[J]. American Journal of Botany, 94(9): 1470-1478. |
[46] |
MIURA T, NAGAI S, TAKEUCHI M, et al., 2019. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data[J]. Scientific Reports, 9(1): 15692.
DOI PMID |
[47] | MOODY A, JOHNSON D M, 2001. Land-surface phenologies from AVHRR using the discrete fourier transform[J]. Remote Sensing of Environment, 75(3): 305-323. |
[48] | MOREIRA A, FONTANA D C, KUPLICH T M, 2019. Wavelet approach applied to EVI/MODIS time series and meteorological data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 147: 335-344. |
[49] | MOULIN S, KERGONAT L, VIOVY N, et al., 1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements[J]. Journal of Climate, 10(6): 1154-1170. |
[50] | PARK I, JONES A, MAZER S J, 2019. PhenoForecaster: A software package for the prediction of flowering phenology[J]. Applications in Plant Sciences, 7(3): e1230. |
[51] | PEÑUELAS J, RUTISHAUSER T, 2009. Phenology feedbacks on climate change[J]. Science, 324(5929): 887-888. |
[52] |
PIAO S L, LIU Q, CHEN A P, et al., 2019. Plant phenology and global climate change: Current progresses and challenges[J]. Global Change Biology, 25(6): 1922-1940.
DOI PMID |
[53] | REED B C, BROWN J F, VANDERZEE D, et al., 1994. Measuring phenological variability from satellite imagery[J]. Journal of Vegetation Science, 5(5): 703-714. |
[54] | RICHARDSON A D, 2023. PhenoCam: An evolving, open-source tool to study the temporal and spatial variability of ecosystem-scale phenology[J]. Agricultural and Forest Meteorology, 342: 109751. |
[55] | RICHARDSON A D, HUFFKENS K, MILLIMAN T, et al., 2018b. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing[J]. Scientific Reports, 8: 5679. |
[56] | RICHARDSON A D, HUFKENS K, LI X, et al., 2019. Testing Hopkins' Bioclimatic Law with PhenoCam data[J]. Applications in Plant Sciences, 7(4): e01228. |
[57] | RICHARDSON A D, HUFKENS K, MILLIMAN T, et al., 2018a. Tracking vegetation phenology across diverse north American biomes using PhenoCam imagery[J]. Scientific Data, 5: 180028. |
[58] | RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, et al., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 169: 156-173. |
[59] | RODRIGUES A, MARÇAL A R S, CUNHA M, 2011. PhenoSat—A tool for vegetation temporal analysis from satellite image data[C]// 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp). Trento, Italy: 45-48. |
[60] | ROERINK G J, MENENTI M, VERHOEF W, 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 21(9): 1911-1917. |
[61] | SALINERO-DELGADO M, ESTÉVEZ J, PIPIA L, et al., 2022. Monitoring cropland phenology on google earth engine using gaussian process regression[J]. Remote Sensing, 14(1): 146. |
[62] | SAVITZKY A, GOLAY M J E, 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 36(8): 1627-1639. |
[63] | SHIN N, MARUYA Y, SAITOH T M, et al., 2021. Usefulness of social sensing using text mining of tweets for detection of autumn phenology[J]. Frontiers in Forests and Global Change, 4: 659910. |
[64] | SITCH S, SMITH B, PRENTICE I C, et al., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 9(2): 161-185. |
[65] | SONNENTAG O, HUFKENS K, TESHERA-STERNE C, et al., 2012. Digital repeat photography for phenological research in forest ecosystems[J]. Agricultural and Forest Meteorology, 152: 159-177. |
[66] |
STEINIER J, TERMONIA Y, DELTOUR J, 1972. Smoothing and differentiation of data by simplified least square procedure[J]. Analytical Chemistry, 44(11): 1906-1909.
DOI PMID |
[67] | STOY P C, MANUDER M, FOKEN T, et al., 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity[J]. Agricultural and Forest Meteorology, 171-172: 137-152. |
[68] | SUNOJ S, IGATHINATHANE C, SALIENDRA N, et al., 2025. PhenoCam guidelines for phenological measurement and analysis in an agricultural cropping environment: A case study of soybean[J]. Remote Sensing, 17(4): 724. |
[69] | THAPA S, GARCIA MILLAN V E, EKLUNDH L, 2021. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, Spectral Reflectance Sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing[J]. Remote Sensing, 13(8): 1597. |
[70] | THORNTON P E, LAW B E, GHOLZ H L, et al., 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 113(1-4):185-222. |
[71] | VIOVY N, ARINO O, BELWARD A S, 1992. The best index slope extraction (BISE): A method for reducing noise in NDVI time-series[J]. International Journal of Remote Sensing, 13(8): 1585-1590. |
[72] | WHITE M A, THORNTON P E, RUNNING S W, 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles, 11(2): 217-234. |
[73] | WHITTAKER E T, 1922. On a new method of graduation[J]. Proceedings of the Edinburgh Mathematical Society, 41: 63-75. |
[74] | WU W, LI Z M, ZHANG Z C, et al., 2023. Developing global annual land surface phenology datasets (1982-2018) from the AVHRR data using multiple phenology retrieval methods[J]. Ecological Indicators, 150: 110262. |
[75] | XIN Q C, BROICH M, ZHU P, et al., 2015. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics[J]. Remote Sensing of Environment, 161: 63-77. |
[76] | XIN Q C, LI J, LI Z M, et al., 2020. Evaluations and comparisons of rule-based and machine-learning-based methods to retrieve satellite-based vegetation phenology using MODIS and USA National Phenology Network data[J]. International Journal of Applied Earth Observation and Geoinformation, 93: 102189. |
[77] |
XU X J, DU H Q, FAN W L, et al., 2019. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data[J]. Journal of Environmental Management, 246: 605-616.
DOI PMID |
[78] | YANG Q, SHI L S, HAN J Y, et al., 2020. A near real-time deep learning approach for detecting rice phenology based on UAV images[J]. Agricultural and Forest Meteorology, 287: 107938. |
[79] | YU F F, PRICE K P, ELLIS J, et al., 2003. Response of seasonal vegetation development to climatic variations in eastern central Asia[J]. Remote Sensing of Environment, 87(1): 42-54. |
[80] |
YU G R, REN W, CHEN Z, et al., 2016. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation[J]. Journal of Geographical Sciences, 26(7): 803-826.
DOI |
[81] | YU G R, WEN X F, SUN X M, et al., 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J]. Agricultural and Forest Meteorology, 137(3-4): 125-137. |
[82] |
YU L X, LIU T X, BU K, et al., 2017. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015[J]. Scientific Reports, 7(1): 14770.
DOI PMID |
[83] | ZENG L L, WARDLOW B D, XIANG D X, et al., 2020. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data[J]. Remote Sensing of Environment, 237: 111511. |
[84] | ZHANG R X, ZHOU Y K, HU T Y, et al., 2023. Detecting the spatiotemporal variation of vegetation phenology in northeastern China based on MODIS NDVI and solar-induced chlorophyll fluorescence dataset[J]. Sustainability, 15(7): 6012. |
[85] | ZHANG X Y, FRIEDL M A, SCHAAF C B, et al., 2003. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 84(3): 471-475. |
[86] | ZHANG X Y, WANG X Y, ZOHNER C M, et al., 2025. Declining precipitation frequency may drive earlier leaf senescence by intensifying drought stress and enhancing drought acclimation[J]. Nature Communications, 16(1): 910. |
[87] | ZHAO L C, GUO W, WANG J, et al., 2021. An efficient method for estimating wheat heading dates using UAV images[J]. Remote Sensing, 13(16): 3067. |
[88] | ZHOU J, JIA L, MENENTI M, 2015. Reconstruction of global MODIS NDVI time series: Performance of Harmonic Analysis of Time Series (HANTS)[J]. Remote Sensing of Environment, 163: 217-228. |
[89] | ZHOU X W, XIN Q C, DAI Y J, et al., 2021. A deep-learning-based experiment for benchmarking the performance of global terrestrial vegetation phenology models[J]. Global Ecology and Biogeography, 30(11): 2178-2199. |
[90] | 戴君虎, 朱梦瑶, 2019. 1963-2018年中国4种代表性木本植物春 (展叶始期) 和秋季叶开始变色期)10个站点监测数据[EB/OL]. 中国科学院地理科学与资源研究所, [2025-01-10]. https://data.casearth.cn/dataset/60e55fc8819aec59a2af6ff3. |
DAI J H, ZHU M Y, 2019. Monitoring data of the leaf-out and leaf-coloring phenology of four representative woody plants in China at ten sites from 1963 to 2018 [EB/OL]. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, [2025-01-10]. https://data.casearth.cn/dataset/60e55fc8819aec59a2af6ff3. | |
[91] | 封伟祎, 朱俊科, 彭文宇, 等, 2023. 无人机多光谱遥感在农作物生长监测中的应用综述[J]. 农业与技术, 43(21): 42-46. |
FENG W Y, ZHU J K, PENG W Y, et al., 2023. Review of the application of UAV multispectral remote sensing in crop growth monitoring[J]. Agricultural Science and Technology, 43(21): 42-46. | |
[92] | 刘玉鹏, 钞锦龙, 邱琳, 等, 2024. 作物物候遥感监测研究进展与展望[J]. 中国农业信息, 36(3): 91-101. |
LIU Y P, CHAO J L, QIU L, et al., 2024. Research progress and prospects of crop phenology remote sensing monitoring[J]. China Agricultural Information, 36(3): 91-101. | |
[93] | 刘忠, 万炜, 黄晋宇, 等. 2018. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 34(24): 60-71. |
LIU Z, WAN W, HUANG J Y, et al., 2018. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(24): 60-71. | |
[94] | 宋创业, 张琳, 吴冬秀, 等, 2017. 2003-2015年CERN植物物候观测数据集[J]. 中国科学数据(中英文网络版), 2(1): 27-34, 149-158. |
SONG C Y, ZHANG L, WU D X, et al., 2017. 2003-2015 CERN plant phenology observation dataset[J]. China Scientific Data (Chinese-English Online Edition), 2(1): 27-34, 149-158. | |
[95] | 宋杰, 张朝, 韩继冲, 2024. 基于GEE与多源遥感数据融合反演高时空分辨率物候[J]. 遥感学报, 28(11): 2910-2926. |
SONG J, ZHANG Z, HAN J C, 2024. High spatiotemporal resolution phenology retrieval based on GEE and multi-source remote sensing data fusion[J]. Journal of Remote Sensing, 28(11): 2910-2926. | |
[96] | 王焕炯, 2018. 1963-2016年中国地面物候观测数据集[EB/OL]. 中国科学院地理科学与资源研究所, [2025-01-10]. https://data.casearth.cn/dataset/5c19a5650600cf2a3c557ab1. |
WANG H J, 2018. 1963-2016 China surface phenology observation dataset[EB/OL]. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, [2025-01-10]. https://data.casearth.cn/dataset/5c19a5650600cf2a3c557ab1. | |
[97] | 王敏钰, 罗毅, 张正阳, 等, 2022. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 26(3): 431-455. |
WANG M Y, LUO Y, ZHANG Z Y, et al., 2022. Research progress in remote sensing extraction and validation methods of vegetation phenology parameters[J]. Journal of Remote Sensing, 26(3): 431-455. | |
[98] |
协子昂, 张超, 冯绍元, 等, 2023. 植被物候遥感监测研究进展[J]. 遥感技术与应用, 38(1): 1-14.
DOI |
XIE Z A, ZHANG C, FENG S Y, et al., 2023. Reviews of methods for vegetation phenology monitoring from remote sensing data[J]. Remote Sensing Technology and Application, 38(1): 1-14. |
[1] | MENG Jie, ZHU Xingyu, XU Mingyue, RONG Lingyun, WU Chuanfu, WANG Qunhui. Experimental Study and Modeling Analysis on the Removal of Simulated Ammonia Containing Odor by Decomposed Cow Manure Residue [J]. Ecology and Environmental Sciences, 2025, 34(6): 922-930. |
[2] | WANG Wei, XIA Yuxuan. Spatial Distribution Characteristics of PM2.5 in Urban Block Based on Remote Sensing Technology and Machine Learning: Taking Binhu New District of Hefei City as an Example [J]. Ecology and Environmental Sciences, 2024, 33(9): 1426-1437. |
[3] | YANG Keming, PENG Lishun, ZHANG Yanhai, GU Xinru, CHEN Xinyang, JIANG Kegui. Research on Biomass Inversion of Multiple Vegetation Types on the Surface of Mining Areas [J]. Ecology and Environmental Sciences, 2024, 33(7): 1027-1035. |
[4] | WEN Ni, WANG Chongyang, CHEN Xingda, CHEN Shuisen, ZHOU Xia, YU Guorong. High-Resolution Remote Sensing Estimation of Ammonia Nitrogen Concentrations in Coastal Urban River Networks Based on Machine Learning Models [J]. Ecology and Environmental Sciences, 2024, 33(11): 1737-1747. |
[5] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environmental Sciences, 2023, 32(6): 1007-1015. |
[6] | SUN Mengxin, ZHANG Yue, XIN Yu, ZHONG Dingjie, YANG Cunjian. Changes of Vegetation Phenology and Its Response to Climate Change in the West Sichuan Plateau in the Past 20 Years [J]. Ecology and Environmental Sciences, 2022, 31(7): 1326-1339. |
[7] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environmental Sciences, 2022, 31(4): 643-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn