Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1483-1494.DOI: 10.16258/j.cnki.1674-5906.2025.09.015
• Review • Previous Articles
ZHANG Yidong1,2(), YANG Xunan2,*(
), CHEN Yanjiao2, WANG Tao1, XU Meiying2
Received:
2025-02-27
Online:
2025-09-18
Published:
2025-09-05
张义栋1,2(), 杨旭楠2,*(
), 陈艳姣2, 汪涛1, 许玫英2
通讯作者:
*杨旭楠。E-mail: yangxn@gdim.cn
作者简介:
张义栋(1996年生),男,硕士研究生,研究方向为水体沉积物有机碳库空间分布。E-mail: zhangyd@gdim.cn
基金资助:
CLC Number:
ZHANG Yidong, YANG Xunan, CHEN Yanjiao, WANG Tao, XU Meiying. Advances in the Application of FT-IR Spectroscopy for Analyzing Organic Carbon in Aquatic Sediments[J]. Ecology and Environmental Sciences, 2025, 34(9): 1483-1494.
张义栋, 杨旭楠, 陈艳姣, 汪涛, 许玫英. FT-IR技术在水体沉积物有机碳分析中的应用研究进展[J]. 生态环境学报, 2025, 34(9): 1483-1494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.015
名称 | 计算公式 | 意义 |
---|---|---|
甲基与亚甲基比 (CH2/CH3 Ratio,RCH2/CH3) | RCH2/CH3用于评估沉积物有机碳脂肪链的长度和分支程度。较低的值表示较短且分支较多的链,较高的值表示较长且较直的链(Abraham et al., | |
脂肪族与含氧化合物比 (CHal/Ox Ratio,RCHal/Ox) | RCHal/Ox用于评估脂肪族C−H伸缩带与含氧基团(如芳香碳)的相对贡献。较高的比率表示含氧基团较少(Abraham et al., | |
硅氧键与含氧化合物比 (SiO/Ox Ratio,RSiO/Ox) | RSiO/Ox是Si−O键与含氧化合物的比值,用于评估Si−O键的相对贡献。较高的值表示Si−O含量较高,可用于评估去矿化效率(Abraham et al., | |
腐殖化指数a(IH(a)) | IH值越高,表明有机碳腐殖化程度越高,越稳定(Obeng et al., | |
腐殖化指数b(IH(b)) | ||
分解程度指数(IDD) | IDD通过计算亲水性化合物与总脂肪族化合物的比值,评估泥炭的分解程度(Obeng et al., | |
疏水性指数(IHP) | IPH用于确定疏水和亲水官能团的相对丰度指数(Obeng et al., |
Table 1 Infrared characteristic index of soil or sediment organic carbons
名称 | 计算公式 | 意义 |
---|---|---|
甲基与亚甲基比 (CH2/CH3 Ratio,RCH2/CH3) | RCH2/CH3用于评估沉积物有机碳脂肪链的长度和分支程度。较低的值表示较短且分支较多的链,较高的值表示较长且较直的链(Abraham et al., | |
脂肪族与含氧化合物比 (CHal/Ox Ratio,RCHal/Ox) | RCHal/Ox用于评估脂肪族C−H伸缩带与含氧基团(如芳香碳)的相对贡献。较高的比率表示含氧基团较少(Abraham et al., | |
硅氧键与含氧化合物比 (SiO/Ox Ratio,RSiO/Ox) | RSiO/Ox是Si−O键与含氧化合物的比值,用于评估Si−O键的相对贡献。较高的值表示Si−O含量较高,可用于评估去矿化效率(Abraham et al., | |
腐殖化指数a(IH(a)) | IH值越高,表明有机碳腐殖化程度越高,越稳定(Obeng et al., | |
腐殖化指数b(IH(b)) | ||
分解程度指数(IDD) | IDD通过计算亲水性化合物与总脂肪族化合物的比值,评估泥炭的分解程度(Obeng et al., | |
疏水性指数(IHP) | IPH用于确定疏水和亲水官能团的相对丰度指数(Obeng et al., |
[1] | ABRAHAM E C, D’ANGELO J A, ALTAMIRANO J C, 2021. Chemometric optimization of a demineralization method for analyzing sediment organic matter by fourier transform infrared spectroscopy[J]. International Journal of Environmental Research, 15(4): 645-654. |
[2] | ANGST G, MUELLER K E, NIEROP K G J, et al., 2021. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter[J]. Soil Biology and Biochemistry, 156: 108189. |
[3] | ADDAD D, MOKHTARI-BELKHADEM F, 2023. Valorization of dam sediments as an adsorbent of a cationic dye, kinetic, isotherm, and thermodynamic studies[J]. Desalination and Water Treatment, 314: 110-121. |
[4] | BI Y X, GAO X Q, SU L, et al., 2023. Unveiling the impact of flooding and salinity on iron oxides-mediated binding of organic carbon in the rhizosphere of Scirpus mariqueter[J]. Science of the Total Environment, 908: 168447. |
[5] | BU H L, WEI Y F, LIU C S, et al., 2023. Effects of illite-smectite clay minerals on the thermal evolution of aliphatic organic matter-clay complexes: a study with thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR)[J]. Journal of Thermal Analysis and Calorimetry, 148(3): 741-752. |
[6] | CHAPKANSKI S, JACQ K, BROCARD G, et al., 2022. Calibration of Short-Wave InfraRed (SWIR) hyperspectral imaging using obtain continuous logging of mineral abundances along sediment cores[J]. Sedimentary Geology, 428: 106062 |
[7] | CHEN S Y, YAO P, WANG Z, et al., 2024. Thermal stability of sedimentary organic carbon in a large river dominated marginal sea[J]. Science of The Total Environment, 954: 176570. |
[8] | DEMYAN M S, RASCHE F, SCHULZ E, et al., 2012. Use of specific peaks obtained by diffuse reflectance Fourier transform mid‐infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J]. European Journal of Soil Science, 63(2): 189-199. |
[9] | DERRIEN M, BROGI S R, GONCALVES-ARAUJO R, 2019. Characterization of aquatic organic matter: Assessment, perspectives and research priorities[J]. Water Research, 163: 114908. |
[10] |
DUBEY D, KUMAR S, DUTTA V, 2023. Anthropogenic disturbances influence mineral and elemental constituents of freshwater lake sediments[J]. Environmental Monitoring and Assessment, 195(12): 1459.
DOI PMID |
[11] | ELLERBROCK R H, NIESSNER D, DEUMLICH D, et al., 2024. Infrared-based analysis of organic matter composition in liquid and solid runoff fractions collected during a single erosion event[J]. Soil and Tillage Research, 235: 105901. |
[12] | EVEN R J, MACHMULLER M B, LAVALLEE J M, et al., 2025. Large errors in soil carbon measurements attributed to inconsistent sample processing[J]. Soil, 11(1): 17-34. |
[13] | FAN T T, YAO X, SUN Z L, et al., 2023. Properties and metal binding behaviors of sediment dissolved organic matter (SDOM) in lakes with different trophic states along the Yangtze River Basin: A comparison and summary[J]. Water Research, 231: 119605. |
[14] | FENG Y, XIAO J Z, WEI Y Q, et al., 2023. Large macroaggregate disintegration contributes to cPOM transfer and carbon loss in forest soil under rainfall simulation[J]. Journal of Soils & Sediments, 23(2): 777-791. |
[15] | GAO X, BERHE A A, HU Y X, et al., 2023. Role of soil organic matter composition and microbial communities on SOC stability: Insights from particle-size aggregates[J]. Journal of soil & sediments, 23(7): 2878-2891. |
[16] | GUO Y, LIU X F, DONG Y, et al., 2024. The continuous increased stability of sediment dissolved organic matter implies ecosystem degradation of lakes in the cold and arid regions[J]. The Science of the Total Environment, 947: 174384. |
[17] | HEMINGWAY J D, ROTHMAN D H, GRANT K E, et al., 2019. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 570(7760): 228-231. |
[18] |
HEERAH K M, READER H E, 2022. Towards the identification of humic ligands associated with iron transport through a salinity gradient[J]. Scientific Reports, 12(1): 15545.
DOI PMID |
[19] | HU X, LI J, WANG J, et al., 2023. Characterization and stability of sedimentary colloids in different ecology regions in Taihu Lake[J]. Journal of Oceanology and Limnology, 41(6): 2146-2159. |
[20] | HERZOG S D, MEKELESH V, SOARES M, et al., 2024. Iron as a precursor of aggregation and vector of organic carbon to sediments in a boreal lake[J]. Biogeochemistry, 167(12): 1533-1552. |
[21] | HU S W, ZHENG L R, ZHANG H Y, et al., 2024. Sequestration of Labile Organic Matter by Secondary Fe Minerals from Chemodenitrification: Insight into Mineral Protection Mechanisms[J]. Environmental Science & Technology, 58(25): 11003-11015. |
[22] | KUNLANIT B, VITYAKON P, PUTTASO A, et al., 2014. Mechanisms controlling soil organic carbon composition pertaining to microbial decomposition of biochemically contrasting organic residues: evidence from midDRIFTS peak area analysis[J]. Soil Biology and Biochemistry, 76: 100-108. |
[23] | KUMAR D, ADSUL T, MOROENG O M, et al., 2025. Climatic reconstruction of the Late Palaeocene using sedimentary archives from the Bikaner-Nagaur Basin, Rajasthan, India[J]. International Journal of Coal Geology, 299: 104695. |
[24] | LEE B J, KIM J, HUR J, et al., 2019. Seasonal dynamics of organic matter composition and its effects on suspended sediment flocculation in river water[J]. Water Resources Research, 55(8): 6968-6985. |
[25] | LIN J, XU X M, YUE B Y, et al., 2021. Multidecadal records of microplastic accumulation in the coastal sediments of the East China Sea[J]. Chemosphere, 270: 128658. |
[26] | LIU D X, MAI Z M, SUN C C, et al., 2022. Dynamics of extracellular polymeric substances and soil organic carbon with mangrove zonation along a continuous tidal gradient[J]. Frontiers in Marine Science, 9: 967767. |
[27] | LU H Y, GUO W, DENG, C X, et al., 2023. Degradation of atrazine in river sediment by dielectric barrier discharge plasma (DBDP) combined with a persulfate (PS) oxidation system: Response surface methodology, degradation mechanisms, and pathways[J]. Environmental Science and Pollution Research, 30(17): 51303-51313 |
[28] | LI Q, LI L F, DU H H, et al., 2024. Soil conditioners promote the formation of Fe-bound organic carbon and its stability[J]. Journal of Environmental Management, 349: 119480. |
[29] | LIANG X R, YE J, XUE Y, et al., 2024. Microplastics and their interaction with microorganisms in Bosten Lake sediment[J]. Water Research, 261: 122060. |
[30] | LI B L, LI Z W, CHEN J, et al., 2025a. Humic-like components in dissolved organic matter inhibit cadmium sequestration by sediment[J]. Journal of Environmental Sciences, 150: 645-656 |
[31] | LI Z C, MENG X, S SHI X Y, et al., 2025b. Adsorption-Desorption Behaviors of Enrofloxacin and Trimethoprim and Their Interactions with Typical Microplastics in Aqueous Systems[J]. Sustainability, 17(2): su17020516. |
[32] | LIU X R, LUO J Y, XU Q, et al., 2025. Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems[J]. Water Research, 275: 123190. |
[33] | MIRZAEITALARPOSHTI R, DEMYAN M S, RASCHE F, et al., 2016. Overcoming carbonate interference on labile soil organic matter peaks for midDRIFTS analysis[J]. Soil Biology and Biochemistry, 99: 150-157. |
[34] | MARGENOT A J, PARIKH S J, CALDERÓN F J, 2023. Fourier‐transform infrared spectroscopy for soil organic matter analysis[J]. Soil Science Society of America Journal, 87(6): 1503-1528. |
[35] | MOHAMMAD A, KELLY B C O, SINGH D N, 2023. NovADEC: Novel Approach for Determination of the Elemental Content of organic matter[J]. International Journal of Environmental Analytical Chemistry, 103(4): 798-813. |
[36] | MÉNDEZ-LÓPEZ M, PARENTE-SENDÍN A, ACEMEL-MÍGUEZ L, et al., 2025. Mobilization of mercury by sediment transport after a prescribed fire in NE Portugal: Insight into size classes and temporal variation[J]. Journal of Hazardous Materials, 484: 136657. |
[37] | NINNES S, MEYER-JACOB C, TOLU J, et al., 2024. Application of mid-infrared spectroscopy for the quantitative and qualitative analysis of organic matter in Holocene sediment records[J]. Holocene, 34(3): 259-273. |
[38] | OYE O J, 2022. Integrated reflection-FTIR and multivariate partial least squares approach for rapid and accurate assessment of total organic carbon concentration in shale[J]. Journal of Petroleum Science and Engineering, 217: 110912. |
[39] | OBENG A S, DUNNE J, DUNNE M, et al., 2023. Soil organic matter carbon chemistry signatures, hydrophobicity and humification index following land use change in temperate peat soils[J]. Heliyon, 9(9): e19347. |
[40] | OSAFO N O A, JAN J, PORCAL P, et al., 2023. Contrasting catchment soil pH and Fe concentrations influence DOM distribution and nutrient dynamics in freshwater systems[J]. Science of The Total Environment, 858(Part 2): 159988. |
[41] | PENEVA S, LE Q N P, MUNHOZ D R, et al., 2025. Microplastic analysis in soils: A comparative assessment[J]. Ecotoxicology and Environmental Safety, 289: 117428. |
[42] | QIN C Y, JIANG Z D, PARVEEN A, et al., 2024. The effect of metal ions on the black tea cream formation by comparative analysis on chemical constituents of resoluble and irresoluble black tea cream[J]. Journal of Food Composition and Analysis, 125: 105774. |
[43] | QIU L X, WANG E H, Li R L, et al., 2024. The urgent need to reduce phosphorus discharges for sustainable mangrove wetland management[J]. Water Research, 258: 121821. |
[44] | REN Y Z, LIU S L, LUO H X, et al., 2024. Seagrass decline weakens sediment organic carbon stability[J]. Science of The Total Environment, 937: 173523. |
[45] | ROBIN S L, MARCHAND C, BAUDIN F, et al., 2024. Millennial-aged organic matter preservation in anoxic and sulfidic mangrove soils: Insights from isotopic and molecular analyses[J]. Estuarine Coastal and Shelf Science, 308: 108936. |
[46] | SADEGHTABAGHI Z, RABBANI A R, HEMMATI‐SARAPARDEH A, 2021. Introducing a Novel Approach for Oil-Oil Correlation based on Asphaltene Structure: X-ray Diffraction[J]. Acta Geologica Sinica‐English Edition, 95(6): 2100-2119. |
[47] |
SUN F S, YU G H, HAN X X, et al., 2023. Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland[J]. Journal of Environmental Sciences, 129: 202-212.
DOI PMID |
[48] | SAJAD S, ALLAM B K, DEBNATH A, et al., 2024. Pollution status of microplastics in the sediments of warm monomictic Dal lake, India: Abundance, composition, and risk assessment[J]. Environmental Pollution, 363(Part 2): 125247. |
[49] | SONG H Z, LIU Z F, LIN B Z, et al., 2024. Clay mineral nanostructures regulate sequestration of organic carbon in typical fluvial sediments[J]. Heliyon, 10(3): e25825. |
[50] | TAN J, LICHTFOUSE E, LUO M, et al., 2023. Aquaculture drastically increases methane production by favoring acetoclastic rather than hydrogenotrophic methanogenesis in shrimp pond sediments[J]. Aquaculture, 563(Part 2): 738999. |
[51] | TRUSLER M M, MOSS-HAYES V L, COOK S, et al., 2024. Microplastics pollution in sediments of the Thames and Medway estuaries, UK: Organic matter associations and predominance of polyethylene[J]. Marine Pollution Bulletin, 208: 116971. |
[52] | TU T H, LI L, LI W, et al., 2025. Different patterns of bacterioplankton in response to inorganic and organic phosphorus inputs in freshwater lakes-a microcosmic study[J]. Water Research, 268(Part A): 122645. |
[53] | VOGEL H, ROSEN P, WAGNER B, et al., 2008. Fourier transform infrared spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records[J]. Journal of Paleolimnology, 40: 689-702. |
[54] | VERRONE V, GUPTA A, LALOO A E, et al., 2023. Organic matter stability and lability in terrestrial and aquatic ecosystems: A chemical and microbial perspective[J]. The Science of the Total Environment, 906: 167757. |
[55] | WEI J E, ZHANG F F, HE T R, et al., 2023. Selective associations of organic matter components with ferrihydrite: Implications for Fe-organic matter preservation in tidal flat wetlands[J]. Geoderma, 437: 116574. |
[56] | WORKMAN J, 2024. A Review of the Latest Research Applications Using FT-IR Spectroscopy[J]. Spectroscopy Supplements, 39(s8): 22-28. |
[57] | YOU K H, 2024. Biodegradation of ancient organic carbon fuels seabed methane emission at the Arctic continental shelves[J]. Global Biogeochemical Cycles, 38(2): e2023GB007999. |
[58] | YU C X, LUONG N T., HEFNI M E, et al., 2024. Storage and distribution of organic carbon and nutrients in acidic soils developed on sulfidic Sediments: The roles of reactive iron and macropores[J]. Environmental Science & Technology, 58(21): 9200-9212. |
[59] | YUAN H Z, GUAN T, LIU E F, et al., 2024. Regime difference between macrophyte and Cyanophyta dominance regulate microbial carbon sequestration mode in lake sediments[J]. Water Research, 267: 122481. |
[60] | ZHANG X X, KE X Z, DU Y, et al., 2023a. Coupled effects of sedimentary iron oxides and organic matter on geogenic phosphorus mobilization in alluvial-lacustrine aquifers[J]. Science of The Total Environment, 878: 163216. |
[61] | ZHANG P, YANG F, DAI W J, et al., 2023b. Variation of sulfate reducing bacteria communities in ionic rare earth tailings and the potential of a single cadmium resistant strain in bioremediation[J]. Chemosphere, 328: 138615. |
[62] | ZENG K, HUANG X C, DAI C S, et al., 2024. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments[J]. Journal of Hazardous Materials, 465: 133086. |
[1] | ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings [J]. Ecology and Environmental Sciences, 2023, 32(7): 1285-1292. |
[2] | ZHAO Junyu, HUANG Xiaorui, SHI Yuanyuan, SONG Xianchong, QIN Zuoyu, TANG Jian. FTIR Characteristics of Rhizosphere Soil of Multi-generation Continuous Eucalyptus Plantation in South Subtropical Region [J]. Ecology and Environmental Sciences, 2022, 31(4): 688-694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn