Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (6): 845-852.DOI: 10.16258/j.cnki.1674-5906.2025.06.002
• Research Article [Ecology] • Previous Articles Next Articles
LIU Zeyuan1(), WEI Youhai1,2,*(
), YAN Xufa3, CHENG Liang1,2, HOU Lu1,2, YAN Ziwei3, GUO Liangzhi1,2
Received:
2024-11-18
Online:
2025-06-18
Published:
2025-06-11
刘泽渊1(), 魏有海1,2,*(
), 严旭发3, 程亮1,2, 侯璐1,2, 严紫玮3, 郭良芝1,2
通讯作者:
* 魏有海, E-mail: 作者简介:
刘泽渊(2000年生),男,硕士研究生,主要从事杂草治理研究。E-mail: 18704921744@163.com
基金资助:
CLC Number:
LIU Zeyuan, WEI Youhai, YAN Xufa, CHENG Liang, HOU Lu, YAN Ziwei, GUO Liangzhi. Impact of Climate Change on the Potential Geographic Distribution of the Invasive Weed Sonchus asper[J]. Ecology and Environmental Sciences, 2025, 34(6): 845-852.
刘泽渊, 魏有海, 严旭发, 程亮, 侯璐, 严紫玮, 郭良芝. 气候变化对入侵杂草续断菊潜在地理分布的影响[J]. 生态环境学报, 2025, 34(6): 845-852.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.06.002
类型 | 代码 | 用于建模的变量 |
---|---|---|
生物气候因子 | bio2 | 平均气温日较差 |
bio3 | 等温性 | |
bio7 | 气温年较差 | |
bio8 | 最湿季均温 | |
bio11 | 最冷季均温 | |
bio15 | 降水量季节性变动系数 | |
bio18 | 最暖季降水量 | |
bio19 | 最冷季降水量 | |
土壤因子0-20 cm | t1 | 酸碱度 |
t2 | 根系层厚度 | |
t3 | 土壤水分状况 | |
t4 | 碳酸钙含量 | |
t5 | 交换性盐基 | |
t6 | 总氮含量 |
Table1 Description of environmental variables
类型 | 代码 | 用于建模的变量 |
---|---|---|
生物气候因子 | bio2 | 平均气温日较差 |
bio3 | 等温性 | |
bio7 | 气温年较差 | |
bio8 | 最湿季均温 | |
bio11 | 最冷季均温 | |
bio15 | 降水量季节性变动系数 | |
bio18 | 最暖季降水量 | |
bio19 | 最冷季降水量 | |
土壤因子0-20 cm | t1 | 酸碱度 |
t2 | 根系层厚度 | |
t3 | 土壤水分状况 | |
t4 | 碳酸钙含量 | |
t5 | 交换性盐基 | |
t6 | 总氮含量 |
时期 | 气候情景 | 低适生区 | 中等适生区 | 高适生区 | |||||
---|---|---|---|---|---|---|---|---|---|
面积/104 km2 | 趋势 | 面积/104 km2 | 趋势 | 面积/104 km2 | 趋势 | ||||
当代 | - | 77.85 | - | 95.88 | - | 93.30 | - | ||
RCP2.6 | 91.52 | ↑13.68 | 97.08 | ↑1.20 | 126.25 | ↑32.94 | |||
2050s | RCP4.5 | 103.53 | ↑25.68 | 105.15 | ↑9.27 | 124.51 | ↑31.21 | ||
RCP8.5 | 111.09 | ↑33.24 | 117.28 | ↑21.40 | 112.25 | ↑18.95 | |||
RCP2.6 | 90.42 | ↑12.58 | 107.76 | ↑11.88 | 104.73 | ↑11.43 | |||
2070s | RCP4.5 | 114.79 | ↑36.95 | 118.40 | ↑22.52 | 118.27 | ↑24.96 | ||
RCP8.5 | 144.04 | ↑66.19 | 130.73 | ↑34.85 | 113.70 | ↑20.40 |
Table 2 Area of potential habitat of Sonchus asper under different climatic scenarios
时期 | 气候情景 | 低适生区 | 中等适生区 | 高适生区 | |||||
---|---|---|---|---|---|---|---|---|---|
面积/104 km2 | 趋势 | 面积/104 km2 | 趋势 | 面积/104 km2 | 趋势 | ||||
当代 | - | 77.85 | - | 95.88 | - | 93.30 | - | ||
RCP2.6 | 91.52 | ↑13.68 | 97.08 | ↑1.20 | 126.25 | ↑32.94 | |||
2050s | RCP4.5 | 103.53 | ↑25.68 | 105.15 | ↑9.27 | 124.51 | ↑31.21 | ||
RCP8.5 | 111.09 | ↑33.24 | 117.28 | ↑21.40 | 112.25 | ↑18.95 | |||
RCP2.6 | 90.42 | ↑12.58 | 107.76 | ↑11.88 | 104.73 | ↑11.43 | |||
2070s | RCP4.5 | 114.79 | ↑36.95 | 118.40 | ↑22.52 | 118.27 | ↑24.96 | ||
RCP8.5 | 144.04 | ↑66.19 | 130.73 | ↑34.85 | 113.70 | ↑20.40 |
当与未来情景比较 | 重叠值 |
---|---|
当代与2050sRCP2.6 | 0.8544 |
当代与2050sRCP4.5 | 0.8391 |
当代与2050sRCP8.5 | 0.8508 |
当代与2070sRCP2.6 | 0.8492 |
当代与2070sRCP4.5 | 0.8568 |
当代与2750sRCP8.5 | 0.8287 |
Table 3 Overlapping ecological niche values of Sonchus asper under current and future climate scenarios
当与未来情景比较 | 重叠值 |
---|---|
当代与2050sRCP2.6 | 0.8544 |
当代与2050sRCP4.5 | 0.8391 |
当代与2050sRCP8.5 | 0.8508 |
当代与2070sRCP2.6 | 0.8492 |
当代与2070sRCP4.5 | 0.8568 |
当代与2750sRCP8.5 | 0.8287 |
[1] | AMIRI M, TARKESH M, SHAFIEZADEH M, 2022. Modelling the biological invasion of Prosopis juliflora using geostatistical-based bioclimatic variables under climate change in arid zones of southwestern Iran[J]. Journal of Arid Land, 14(2): 203-224. |
[2] | BALDWIN M E, KAIN J S, 2006. Sensitivity of several performance measures to displacement error, bias, and event frequency[J]. Weather and Forecasting, 21(4): 636-648. |
[3] | ÁNGEL-VALLEJO M C, AGUIRRE-ACOSTA N, RODRÍGUEZ-Rey G T, et al., 2024. Distribution models in invasive plants with climatic niche expansion: A case study of Ulex europaeus L. in Colombian Andes[J]. Biological Invasions, 26(6): 1919-1930. |
[4] | SEUFFERT M E, MARTÍN P R, 2024. Global distribution of the invasive apple snail Pomacea canaliculata: Analyzing possible shifts in climatic niche between native and invaded ranges and future spread[J]. Aquatic Sciences, 86(1): 1-15. |
[5] | ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution & Systematics, 40(1): 677-697. |
[6] | ZHAO G H, CUI X Y, SUN J J, et al., 2021. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized Biomod2 and MaxEnt models[J]. Ecological Indicators, 132(Suppl C): 108256. |
[7] | LI C R, LUO G F, YUE C R, et al., 2024. Distribution patterns and potential suitable habitat prediction of Ceracris kiangsu (Orthoptera: Arcypteridae) under climate change-a case study of China and Southeast Asia[J]. Scientific Reports, 14(1): 20580. |
[8] | LI M, ZHAO H X, XIAN X Q, et al., 2023. Geographical distribution pattern and ecological niche of Solenopsis invicta Buren in China under climate change[J]. Diversity, 15(5): 607. |
[9] | THUILLER W, LAFOURCADE B, ENGLER R, et al., 2009. BIOMOD: A platform for ensemble forecasting of species distributions[J]. Ecography, 32(3): 369-373. |
[10] |
LANDGREBE T C W, DUIN R P W, 2008. Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5): 810-822.
DOI PMID |
[11] | WANG Y, YANG Y G, ZHANG M G, 2024. The influence of climate change on the potential distribution of Ageratum conyzoides in China[J]. Ecology and Evolution, 14(10): e11513. |
[12] | YANG J T, HUANG Y, SU M M, et al., 2024. Spatial distribution patterns of the key afforestation species Cupressus funebris: Insights from an ensemble model under climate change scenarios[J]. Forests, 15(8): 1280. |
[13] | ZHANG W G, CHEN X Y, LIU R L, et al., 2022. Realized niche shift associated with Galinsoga quadriradiata (Asteraceae) invasion in China[J]. Journal of Plant Ecology, 15(3): 538-548. |
[14] | ZHAO Z Y, XIAO N W, SHEN M, et al., 2022. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China[J]. Science of The Total Environment, 842: 156867. |
[15] | 毕雅琼, 张明旭, 陈元, 等, 2022. 基于Biomod2组合模型的中国野生芍药Paeonia lactiflora适宜生境分布[J]. 中国中药杂志, 47(2): 376-384. |
BI Y Q, ZHANG M X, CHEN Y, et al., 2022. Applying Biomod2 for modeling of species suitable habitats: A case study of Paeonia lactiflora in China[J]. Chinese Journal of Traditional Chinese Medicine, 47(2): 376-384. | |
[16] | 陈爱莉, 龚伟, 孔芬, 等, 2021. 气候变化对杨梅种植适宜区的影响[J]. 扬州大学学报(农业与生命科学版), 42(4): 96-102. |
CHEN A L, GONG W, KONG F, et al., 2021. Predicting the influence of climate change on the suitable range for planting Myrica rubra[J]. Journal of Yangzhou University (Agriculture and Life Sciences), 42(4): 96-102. | |
[17] |
范月圆, 高煌杰, 陶少敏, 等, 2024. 基于Biomod2组合模型的福寿螺在中国的潜在分布预测[J]. 应用生态学报, 35(8): 2237-2246.
DOI |
FAN Y Y, GAO H J, TAO S M, et al., 2024. Potential distribution prediction of Pomacea canaliculata in China based on the Biomod2[J]. Journal of Applied Ecology, 35(8): 2237-2246. | |
[18] |
高明龙, 铁牛, 张晨, 等, 2024. 基于Biomod2组合模型的我国山杨潜在分布区研究[J]. 南京林业大学学报(自然科学版), 48(2): 247-255.
DOI |
GAO M L, TIE N, ZHANG C, et al., 2024. Study on the potential distribution area of the mountain poplar in China based on the Biomod2 combination model[J]. Journal of Nanjing Forestry University (Natural Science Edition), 48(2): 247-255. | |
[19] | 郭发城, 马贵龙, 高桂珍, 2024. 基于Biomod2组合模型对入侵害虫杏鬃球蚧的潜在适生区预测[J]. 林业科学研究, 37(4): 136-147. |
GUO F C, MA G L, GAO G Z, 2024. Prediction of potential habitat areas for the invasive pest Sphaerolecanium prunastri based on Biomod2 combined model[J]. Research on Forestry Science, 37(4): 136-147. | |
[20] |
黄芳, 张文俊, 张建成, 等, 2021. 基于BIOCLIM模型的绿圆跳虫在中国的适生区分析[J]. 浙江农业学报, 33(11): 2098-2103.
DOI |
HUANG F, ZHANG W J, ZHANG J C, et al., 2021. Potential distribution of Sminthurus viridis in China analyzed by BIOCLIM model[J]. Zhejiang Journal of Agriculture, 33(11): 2098-2103. | |
[21] | 刘婷, 曹家豪, 齐瑞, 等, 2022. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 42(3): 481-491. |
LIU T, CAO J H, QI R, et al., 2022. Research of potential geographical distribution of Picea purpurea based on GIS and MaxEnt under different climate conditions[J]. Northwest Journal of Botany, 42(3): 481-491. | |
[22] | 覃阳平, 李华, 雷相东, 2024. 基于最大熵模型的云南思茅松潜在分布区[J]. 中南林业科技大学学报, 44(11): 98-108. |
QIN Y P, LI H, LEI X D, 2024. Potential distribution of Pinus kesiya var. langbianensis in Yunnan province based on maximum entropy model[J]. Journal of Central South University of Forestry Science and Technology, 44(11): 98-108. | |
[23] |
王子文, 尹进, 王星, 等, 2023. 辽宁省入侵植物曼陀罗的生境适宜性评价——基于Biomod2组合模型[J]. 应用生态学报, 34(5): 1272-1280.
DOI |
WANG Z W, YIN J, WANG X, et al., 2023. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model[J]. Journal of Applied Ecology, 34(5): 1272-1280. | |
[24] | 许桂芳, 王鸿升, 刘明久, 2011. 外来植物续断菊的化感作用研究[J]. 河南师范大学学报(自然科学版), 39(5): 141-144. |
XU G F, WANG H S, LIU M J, 2011. Allelopathic activity of exotic plant Sonchus Asper [J]. Journal of Henan Normal University (Natural Science Edition), 39(5): 141-144. | |
[25] |
杨乐, 2024. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 33(6): 888-899.
DOI |
YANG L, 2024. Prediction of invasive trend of alien plant Amaranthus retroflexus based on ensemble model[J]. Journal of Ecology and Environment, 33(6): 888-899. | |
[26] | 张婷, 胡诗遥, 杜伟, 等, 2024. 基于MaxEnt生态位模型预测当前气候条件下顶羽菊在中国的潜在适生区[J]. 植物保护, 50(4): 61-68. |
ZHANG T, HU S Y, DU W, et al., 2024. Prediction of the potential suitable areas of Rhaponticum repens in China based on MaxEnt under current climate conditions[J]. Plant Protection, 50(4): 61-68. | |
[27] | 张玉洁, 余函纹, 郑昭焕, 等, 2024. 基于优化的Maxent模型预测桔梗在中国的潜在适生区[J]. 药学学报, 59(9): 2625-2633. |
ZHANG Y J, YU H W, ZHENG Z H, et al., 2024. Predicting the potential suitable areas of Platycodon grandiflorum in China using the optimized MaxEnt model[J]. Journal of Pharmaceutical Sciences, 59(9): 2625-2633. | |
[28] | 张源, 秦誉嘉, 张岳, 等, 2022. 基于集成模型预测外来入侵植物北美刺龙葵的适生区[J]. 植物保护学报, 49(5): 1434-1439. |
ZHANG Y, QIN Y J, ZHANG Y, et al., 2022. Ensemble models to predict the suitable areas of alien invasive horsenettle Solanum carolinense[J]. Journal of Plant Protection, 49(5): 1434-1439. |
[1] | ZHANG Yali, HUANG Zhujun, TIAN Yichao, LIN Junliang, QIN Caihuan. Time-lag and Accumulation Responses of Fractional Vegetation Coverage Change to Extreme Climate in Southwestern China [J]. Ecology and Environmental Sciences, 2025, 34(5): 665-677. |
[2] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
[3] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
[4] | LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin [J]. Ecology and Environmental Sciences, 2024, 33(5): 802-811. |
[5] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environmental Sciences, 2024, 33(4): 509-519. |
[6] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environmental Sciences, 2023, 32(5): 825-834. |
[7] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environmental Sciences, 2023, 32(5): 898-909. |
[8] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2023, 32(3): 439-449. |
[9] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1521-1529. |
[10] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environmental Sciences, 2022, 31(8): 1566-1572. |
[11] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environmental Sciences, 2022, 31(7): 1293-1305. |
[12] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environmental Sciences, 2022, 31(6): 1071-1079. |
[13] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2022, 31(6): 1080-1090. |
[14] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environmental Sciences, 2022, 31(11): 2111-2123. |
[15] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environmental Sciences, 2022, 31(1): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn