Ecology and Environment ›› 2024, Vol. 33 ›› Issue (9): 1460-1470.DOI: 10.16258/j.cnki.1674-5906.2024.09.013
• Research Article [Environmental Science] • Previous Articles Next Articles
LIU Dongyi1(), QU Yonghua1,2,*(
), FENG Yaowei1, QU Ran3
Received:
2024-05-13
Online:
2024-09-18
Published:
2024-10-18
Contact:
QU Yonghua
通讯作者:
屈永华
作者简介:
刘东宜(2001年生),男,硕士研究生,研究方向为灾害遥感。E-mail: liudy@mail.bnu.edu.cn
基金资助:
CLC Number:
LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model[J]. Ecology and Environment, 2024, 33(9): 1460-1470.
刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.09.013
回归模型 | 训练集 | 验证集 | |||
---|---|---|---|---|---|
R2 | σRMSE | R2 | σRMSE | ||
随机森林回归 | 0.74 | 155.05 | 0.8 | 35.94 | |
支持向量机回归 | 0.92 | 83.77 | −0.89 | 109.73 | |
偏最小二乘回归 | 0.32 | 250.73 | −0.79 | 106.71 | |
卷积神经网络 | 0.07 | 193.62 | 0.5 | 56.58 | |
多元逐步回归 | 0.24 | 265.26 | −4.65 | 189.54 | |
CatBoost 回归 | 0.92 | 87.73 | 0.88 | 27.94 |
Table 1 Comparison Table of Fitting Effect Parameters
回归模型 | 训练集 | 验证集 | |||
---|---|---|---|---|---|
R2 | σRMSE | R2 | σRMSE | ||
随机森林回归 | 0.74 | 155.05 | 0.8 | 35.94 | |
支持向量机回归 | 0.92 | 83.77 | −0.89 | 109.73 | |
偏最小二乘回归 | 0.32 | 250.73 | −0.79 | 106.71 | |
卷积神经网络 | 0.07 | 193.62 | 0.5 | 56.58 | |
多元逐步回归 | 0.24 | 265.26 | −4.65 | 189.54 | |
CatBoost 回归 | 0.92 | 87.73 | 0.88 | 27.94 |
[1] | CAMPILLO-CORA C, RODRÍGUEZ-GONZÁLEZ L, ARIAS-ESTÉVEZ M, et al., 2021. Influence of physicochemical properties and parent material on chromium fractionation in soils[J]. Processes, 9(6): 1073. |
[2] | CHEN L H, LAI J, TAN K, et al., 2022. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism[J]. Science of The Total Environment, 813: 151882. |
[3] | CHOE E, VAN DER MEER F, VAN RUITENBEEK F, et al., 2008. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain[J]. Remote Sensing of Environment, 112(7): 3222-3233. |
[4] | DING Y, CHEN Z Q, LU W F, et al., 2021. A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei[J]. Atmospheric Environment, 249: 118212. |
[5] | GE X Y, DING J L, TENG D X, et al., 2022. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks[J]. International Journal of Applied Earth Observation and Geoinformation, 112: 102969. |
[6] | HONG Y S, CHEN S C, LIU Y L, et al., 2019. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. CATENA, 174: 104-116. |
[7] | LEE S H, VO T P, THAI H T, et al., 2021. Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm[J]. Engineering Structures, 238: 112109. |
[8] | LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of The Total Environment, 468-469: 843-853. |
[9] | LIU P, LIU Z H, HU Y M, et al., 2019. Integrating a hybrid back propagation neural network and particle swarm optimization for estimating soil heavy metal contents using hyperspectral data[J]. Sustainability, 11(2): 419. |
[10] | MENG X T, BAO Y L, YE Q, et al., 2021. Soil organic matter prediction model with satellite hyperspectral image based on optimized denoising method[J]. Remote Sensing, 13(12): 2273. |
[11] | PARK J, LEE W H, KIM K T, et al., 2022. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence[J]. Science of The Total Environment, 832: 155070. |
[12] | PROKHORENKOVA L, GUSEV G, VOROBEV A, et al., 2018. CatBoost: Unbiased boosting with categorical features[EB/OL]. arXiv, [2018-10-24]. https://arxiv.org/abs/1810.11363. |
[13] | ZHANG B, GUO B, ZOU B, et al., 2022. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China[J]. Environmental Pollution, 300: 118981. |
[14] | ZHANG M, YUAN L Y, 2023. High-precision estimation of hourly PM2.5 concentration based on a grid scale of satellite-derived products[J]. Atmospheric Pollution Research, 14(4): 101724. |
[15] | ZHANG S W, SHEN Q, NIE C J, et al., 2019. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211: 393-400. |
[16] | ZHAO S H, WANG Q, LI Y, et al., 2017. An overview of satellite remote sensing technology used in China’s environmental protection[J]. Earth Science Informatics, 10(2): 137-148. |
[17] | 柏晗, 杨耘, 崔琴芳, 等, 2022. 基于GA-XGBoost模型的GF-5卫星影像土壤重金属含量反演研究[J]. 激光与光电子学进展, 59(12): 515-524. |
BAI H, YANG Y, CUI Q F, et al., 2022. Retrieval of heavy metal content in soil using GF-5 satellite images based on GA-XGBoost model[J]. Laser & Optoelectronics Progress, 59(12): 515-524. | |
[18] |
陈点点, 陈芸芝, 冯险峰, 等, 2022. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 24(4): 780-791.
DOI |
CHEN D D, CHEN Z Y, FENG X F, et al., 2022. Retrieving suspended matter concentration in rivers based on hyperparameter optimized catboost algorithm[J]. Journal of Geo-Information Science, 24(4): 780-791. | |
[19] | 陈宇波, 薛云, 邹滨, 等, 2020. 有色金属矿区土壤铬污染遥感反演研究[J]. 中南大学学报(自然科学版), 51(10): 2876-2884. |
CHEN Y B, XUE Y, ZOU B, et al., 2020. Research on remote sensing retrieval of soil chromium pollution in nonferrous metal mining area[J]. Journal of Central South University (Science and Technology), 51(10): 2876-2884. | |
[20] |
龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177.
DOI |
GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177. | |
[21] | 孔卓, 杨海涛, 郑逢杰, 等, 2022. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 34(4): 1-10. |
KONG Z, YANG H T, ZHENG F J, et al., 2022. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 34(4): 1-10. | |
[22] | 刘银年, 2021. 高光谱成像遥感载荷技术的现状与发展[J]. 遥感学报, 25(1): 439-459. |
LIU Y N, 2021. Development of hyperspectral imaging remote sensing technology[J]. Journal of Remote Sensing, 25(1): 439-459. | |
[23] | 苏红军, 2022. 高光谱遥感影像降维: 进展、挑战与展望[J]. 遥感学报, 26(8): 1504-1529. |
SU H J, 2022. Downscaling hyperspectral remote sensing images: progress, challenges and prospects[J]. Journal of Remote Sensing, 26(8): 1504-1529. | |
[24] | 孙丽丽, 方宏彬, 朱星星, 等, 2021. 基于网格搜索优化的XGBoost模型的股票预测[J]. 阜阳师范大学学报(自然科学版), 38(2): 97-101. |
SUN L L, FANG H B, ZHU X X, et al., 2021. Stock prediction using XGBoost model based on grid search optimization[J]. Journal of Fuyang Normal University (Natural Science), 38(2): 97-101. | |
[25] | 唐洪钊, 肖晨超, 梁树能, 等, 2020. 资源一号02D卫星在轨辐射定标精度验证与分析[J]. 航天器工程, 29(6): 142-147. |
TANG H Z, XIAO C C, LIANG S N, et al., 2020. On-orbit radiometric calibration and validation of ZY-1-02D satellite[J]. Spacecraft Engineering, 29(6): 142-147. | |
[26] | 田义超, 郑丹琳, 张强, 等, 2024. 基于国产资源一号02D卫星和机器学习算法的钦州湾滨海土壤盐分反演[J]. 中国环境科学, 44(1): 371-385. |
TIAN Y C, ZHENG D L, ZHANG Q, et al., 2024. Inversion of coastal soil salinity in Qinzhouwan based on domestic ZY1-02D satellite and machine learning algorithm[J]. China Environmental Science, 44(1): 371-385. | |
[27] |
王雪梅, 玉米提·买明, 毛东雷, 等, 2021. 干旱区绿洲耕层土壤重金属铬含量的高光谱估测[J]. 生态环境学报, 30(10): 2076-2084.
DOI |
WANG X M, YUMITI M, MAO D L, et al., 2021. Hyperspectral estimation of heavy metal chromium content in arable soil of arid area oasis[J]. Journal of Ecology and Environment, 30(10): 2076-2084. | |
[28] | 闫峰, 2010. 影响土壤中Cr(Ⅵ)吸持与Cr(Ⅲ)氧化的主要土壤理化性质分析[D]. 咸阳: 西北农林科技大学. |
YAN F, 2010. Analysis of the main soil physicochemical properties affecting Cr(VI) adsorption and Cr(III) oxidation in soil[D]. Xianyang: Northwest A & F University. | |
[29] | 颜祥照, 姚艳敏, 张霄羽, 等, 2021. 星载高分五号高光谱耕地主要土壤类型土壤有机质含量估测——以黑龙江省建三江农垦区为例[J]. 中国土壤与肥料 (5): 10-20. |
YAN X Z, YAO Y M, ZHANG X Y, et al., 2021. Estimation of soil organic matter content in major soil types of star-borne Gaofen-5 hyperspectral cultivated land: A case study of Jiansanjiang reclamation area in Heilongjiang province[J]. Soil and Fertilizer Sciences in China (5): 10-20. | |
[30] |
杨灵玉, 高小红, 张威, 等, 2016. 基于Hyperion影像植被光谱的土壤重金属含量空间分布反演——以青海省玉树县为例[J]. 应用生态学报, 27(6): 1775-1784.
DOI |
YANG L Y, GAO X H, ZHANG W, et al., 2016. Inversion of spatial distribution of soil heavy metal content based on hyperion image vegetation spectra: A case study of Yushu County in Qinghai Province[J]. Chinese Journal of Applled Ecology, 27(6): 1775-1784. | |
[31] | 袁自然, 魏立飞, 张杨熙, 等, 2020. 优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析[J]. 光谱学与光谱分析, 40(2): 567-573. |
YUAN Z R, WEI L F, ZHANG Y X, et al., 2020. Optimization of CARS combined with PSO-SVM algorithm for hyperspectral inversion analysis of heavy metal arsenic in farmland soil[J]. Spectroscopy and Spectral Analysis, 40(2): 567-573. | |
[32] | 张明月, 张奇栎, 王璐, 等, 2019. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 34(2): 313-322. |
ZHANG M Y, ZHANG Q L, WANG L, et al., 2019. Research on chromium retrieval of black soil with hyperspectral imagery in northeast of China[J]. Remote Sensing Technology and Application, 34(2): 313-322. | |
[33] | 赵瑞, 崔希民, 刘超, 2020. GF-5高光谱遥感影像的土壤有机质含量反演估算研究[J]. 中国环境科学, 40(8): 3539-3545. |
ZHAO R, CUI X M, LIU C, et al., 2020. Inverse estimation of soil organic matter content from GF-5 hyperspectral remote sensing images[J]. China Environmental Science, 40(8): 3539-3545. | |
[34] | 郑家桐, 王鹏, 石航源, 等, 2023. 基于CatBoost模型和SHAP解释方法的土壤重金属影响因素与程度定量分析[J]. 环境科学学报, 43(4): 448-456. |
ZHENG J T, WANG P, SHI H Y, et al., 2023. Quantitative analysis of the influence factors and extent of soil heavy metals based on CatBoost model and SHAP interpretation method[J]. Acta Scientiae Circumstantiae, 43(4): 448-456. |
[1] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environment, 2024, 33(5): 791-801. |
[2] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[3] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[4] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[5] | TA Weiyuan, KANG Zhen, MENG Zhaojun, JIN Shenghua, YANG Xing, GUO Longfei, ZHAO Dongxu, ZHANG Xin. Research of Pollution Characteristics of Heavy Metals in Soil of Typical Closed Zinc Smelting Enterprises in Qinling Mountains [J]. Ecology and Environment, 2021, 30(7): 1513-1521. |
[6] | CHA Lijuan, ZHOU Dandan, FENG Hongjuan, ZHAO Shuyuan, FENG Kaiping. Research on the Bioaccumulation Characteristics of Two Kinds of Wild Edible Fungi to Soil Heavy Metals [J]. Ecology and Environment, 2021, 30(10): 2093-2099. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn