Ecology and Environment ›› 2024, Vol. 33 ›› Issue (4): 509-519.DOI: 10.16258/j.cnki.1674-5906.2024.04.002
• Research Article [Ecology] • Previous Articles Next Articles
TIAN Xuchen1,2(), WEI Hongling1,2, XIE Shengnan1,2, CHU Qiming1,2, YANG Jing1,2, ZHANG Ying1,2, XIAO Siqiu1,2, TANG Zonghua1,2,3, LIU Ying1,2,3, LI Dewen1,2,3,*(
)
Received:
2023-12-14
Online:
2024-04-18
Published:
2024-05-31
Contact:
LI Dewen
田叙辰1,2(), 魏洪玲1,2, 解胜男1,2, 储启名1,2, 杨婧1,2, 张颖1,2, 肖思秋1,2, 唐中华1,2,3, 刘英1,2,3, 李德文1,2,3,*(
)
通讯作者:
李德文
作者简介:
田叙辰(1998年生),女,硕士研究生,研究方向为植物生理生态。E-mail: 3364871597@qq.com
基金资助:
CLC Number:
TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model[J]. Ecology and Environment, 2024, 33(4): 509-519.
田叙辰, 魏洪玲, 解胜男, 储启名, 杨婧, 张颖, 肖思秋, 唐中华, 刘英, 李德文. 基于MaxEnt模型的东北地区槭树潜在地理分布[J]. 生态环境学报, 2024, 33(4): 509-519.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.04.002
变量 | 变量名称 | 单位 | 东北槭 | 色木槭 | 茶条槭 | 紫花槭 |
---|---|---|---|---|---|---|
BIO1 | 年平均气温 | ℃ | 1.26‒4.79 | -0.53‒6.35 | -0.81‒6.35 | 1.52‒6.35 |
BIO2 | 平均气温日较差 | ℃ | 12.6‒12.7 | 11.9‒13.6 | 11.9‒13.9 | 11.9‒12.7 |
BIO3 | 等温性 | - | 25.3‒26.9 | 24.1‒25.1 | 23.8‒25.1 | 25.1‒26.4 |
BIO4 | 气温季节性变动系数 | - | 1256‒1355 | 1273‒1569 | 1273‒1653 | 1273‒1296 |
BIO5 | 最热月份最高温度 | ℃ | 22.8‒26.5 | 25.2‒27.6 | 26.1‒27.6 | 23.3‒27.6 |
BIO6 | 最冷月份最低温度 | ℃ | -24.3‒ -23.4 | -31.1‒ -19.9 | -32.2‒ -19.9 | -24.9‒ -19.9 |
BIO7 | 气温年较差 | ℃ | 47.1‒49.9 | 47.5‒56.3 | 47.5‒58.3 | 47.5‒48.2 |
BIO8 | 最湿季度平均温度 | ℃ | 16.1‒20.4 | 17.6‒21.2 | 18.2‒21.2 | 16.7‒21.2 |
BIO9 | 最干季度平均温度 | ℃ | -17.0‒ -12.8 | -21.0‒ -10.0 | -20.9‒ -10.4 | -15.4‒ -10.5 |
BIO10 | 最暖季度平均温度 | ℃ | 16.1‒20.4 | 17.6‒21.2 | 18.2‒21.2 | 16.7‒21.2 |
BIO11 | 最冷季度平均温度 | ℃ | -12.8‒ -17.0 | -21.0‒ -10.0 | -22.3‒ -10.4 | -15.4‒10.5 |
BIO12 | 年降水量 | mm | 791‒824 | 635‒852 | 518‒852 | 758‒852 |
BIO13 | 最湿月份降水量 | mm | 190‒211 | 154‒213 | 126‒213 | 182‒213 |
BIO14 | 最干月份降水量 | mm | 6.00‒8.00 | 5.00‒9.00 | 4.00‒9.00 | 7.00‒9.00 |
BIO15 | 降水量季节性变动系数 | - | 97.9‒99.1 | 98.3‒102 | 99.2‒98.3 | 95.6‒98.3 |
BIO16 | 最湿季度降水量 | mm | 350‒604 | 331‒606 | 323‒555 | 358‒606 |
BIO17 | 最干季度降水量 | mm | 11.0‒39.0 | 10.0‒39.0 | 13.0‒38.0 | 13.0‒39.0 |
BIO18 | 最暖季度降水量 | mm | 350‒604 | 331‒606 | 323‒555 | 358‒606 |
BIO19 | 最冷季度降水量 | mm | 11.0‒39.0 | 10.0‒39.0 | 13.0‒38.0 | 13.0‒39.0 |
Table 1 The climatic variables of potential suitable habitats of Acer in northeast area
变量 | 变量名称 | 单位 | 东北槭 | 色木槭 | 茶条槭 | 紫花槭 |
---|---|---|---|---|---|---|
BIO1 | 年平均气温 | ℃ | 1.26‒4.79 | -0.53‒6.35 | -0.81‒6.35 | 1.52‒6.35 |
BIO2 | 平均气温日较差 | ℃ | 12.6‒12.7 | 11.9‒13.6 | 11.9‒13.9 | 11.9‒12.7 |
BIO3 | 等温性 | - | 25.3‒26.9 | 24.1‒25.1 | 23.8‒25.1 | 25.1‒26.4 |
BIO4 | 气温季节性变动系数 | - | 1256‒1355 | 1273‒1569 | 1273‒1653 | 1273‒1296 |
BIO5 | 最热月份最高温度 | ℃ | 22.8‒26.5 | 25.2‒27.6 | 26.1‒27.6 | 23.3‒27.6 |
BIO6 | 最冷月份最低温度 | ℃ | -24.3‒ -23.4 | -31.1‒ -19.9 | -32.2‒ -19.9 | -24.9‒ -19.9 |
BIO7 | 气温年较差 | ℃ | 47.1‒49.9 | 47.5‒56.3 | 47.5‒58.3 | 47.5‒48.2 |
BIO8 | 最湿季度平均温度 | ℃ | 16.1‒20.4 | 17.6‒21.2 | 18.2‒21.2 | 16.7‒21.2 |
BIO9 | 最干季度平均温度 | ℃ | -17.0‒ -12.8 | -21.0‒ -10.0 | -20.9‒ -10.4 | -15.4‒ -10.5 |
BIO10 | 最暖季度平均温度 | ℃ | 16.1‒20.4 | 17.6‒21.2 | 18.2‒21.2 | 16.7‒21.2 |
BIO11 | 最冷季度平均温度 | ℃ | -12.8‒ -17.0 | -21.0‒ -10.0 | -22.3‒ -10.4 | -15.4‒10.5 |
BIO12 | 年降水量 | mm | 791‒824 | 635‒852 | 518‒852 | 758‒852 |
BIO13 | 最湿月份降水量 | mm | 190‒211 | 154‒213 | 126‒213 | 182‒213 |
BIO14 | 最干月份降水量 | mm | 6.00‒8.00 | 5.00‒9.00 | 4.00‒9.00 | 7.00‒9.00 |
BIO15 | 降水量季节性变动系数 | - | 97.9‒99.1 | 98.3‒102 | 99.2‒98.3 | 95.6‒98.3 |
BIO16 | 最湿季度降水量 | mm | 350‒604 | 331‒606 | 323‒555 | 358‒606 |
BIO17 | 最干季度降水量 | mm | 11.0‒39.0 | 10.0‒39.0 | 13.0‒38.0 | 13.0‒39.0 |
BIO18 | 最暖季度降水量 | mm | 350‒604 | 331‒606 | 323‒555 | 358‒606 |
BIO19 | 最冷季度降水量 | mm | 11.0‒39.0 | 10.0‒39.0 | 13.0‒38.0 | 13.0‒39.0 |
槭树 | 交互因子 | q值 | 交互结果 |
---|---|---|---|
东北槭 | BIO12∩BIO10 | 0.82 | 非线性增强 |
东北槭 | BIO12∩BIO9 | 0.78 | 非线性增强 |
东北槭 | BIO12∩BIO11 | 0.77 | 非线性增强 |
色木槭 | BIO15∩BIO1 | 0.69 | 非线性增强 |
色木槭 | BIO12∩BIO10 | 0.68 | 非线性增强 |
色木槭 | BIO15∩BIO10 | 0.67 | 非线性增强 |
茶条槭 | BIO15∩BIO1 | 0.80 | 非线性增强 |
茶条槭 | BIO15∩BIO8 | 0.77 | 双因子增强 |
茶条槭 | BIO15∩BIO10 | 0.77 | 双因子增强 |
紫花槭 | BIO17∩BIO2 | 0.75 | 非线性增强 |
紫花槭 | BIO17∩BIO10 | 0.73 | 非线性增强 |
紫花槭 | BIO17∩BIO3 | 0.69 | 非线性增强 |
Table 2 Interaction detector results of climate factors under current situation
槭树 | 交互因子 | q值 | 交互结果 |
---|---|---|---|
东北槭 | BIO12∩BIO10 | 0.82 | 非线性增强 |
东北槭 | BIO12∩BIO9 | 0.78 | 非线性增强 |
东北槭 | BIO12∩BIO11 | 0.77 | 非线性增强 |
色木槭 | BIO15∩BIO1 | 0.69 | 非线性增强 |
色木槭 | BIO12∩BIO10 | 0.68 | 非线性增强 |
色木槭 | BIO15∩BIO10 | 0.67 | 非线性增强 |
茶条槭 | BIO15∩BIO1 | 0.80 | 非线性增强 |
茶条槭 | BIO15∩BIO8 | 0.77 | 双因子增强 |
茶条槭 | BIO15∩BIO10 | 0.77 | 双因子增强 |
紫花槭 | BIO17∩BIO2 | 0.75 | 非线性增强 |
紫花槭 | BIO17∩BIO10 | 0.73 | 非线性增强 |
紫花槭 | BIO17∩BIO3 | 0.69 | 非线性增强 |
槭树 | 气候情景 | 交互因子 | q值 | 交互结果 |
---|---|---|---|---|
东北槭 | SSP1-2.6 | BIO12∩BIO10 | 0.75 | 非线性增强 |
东北槭 | SSP2-4.5 | BIO12∩BIO10 | 0.83 | 非线性增强 |
东北槭 | SSP3-7.0 | BIO12∩BIO10 | 0.71 | 非线性增强 |
东北槭 | SSP5-8.5 | BIO12∩BIO10 | 0.75 | 非线性增强 |
色木槭 | SSP1-2.6 | BIO12∩BIO10 | 0.72 | 非线性增强 |
色木槭 | SSP2-4.5 | BIO12∩BIO10 | 0.72 | 非线性增强 |
色木槭 | SSP3-7.0 | BIO15∩BIO1 | 0.67 | 非线性增强 |
色木槭 | SSP5-8.5 | BIO15∩BIO10 | 0.67 | 非线性增强 |
茶条槭 | SSP1-2.6 | BIO15∩BIO10 | 0.73 | 非线性增强 |
茶条槭 | SSP2-4.5 | BIO5∩BIO2 | 0.72 | 非线性增强 |
茶条槭 | SSP3-7.0 | BIO15∩BIO1 | 0.67 | 非线性增强 |
茶条槭 | SSP5-8.5 | BIO15∩BIO8 | 0.74 | 非线性增强 |
紫花槭 | SSP1-2.6 | BIO17∩BIO10 | 0.71 | 非线性增强 |
紫花槭 | SSP2-4.5 | BIO17∩BIO10 | 0.77 | 非线性增强 |
紫花槭 | SSP3-7.0 | BIO17∩BIO2 | 0.69 | 非线性增强 |
紫花槭 | SSP5-8.5 | BIO17∩BIO11 | 0.71 | 非线性增强 |
Table 3 Interaction detector results of climate factors under future situation
槭树 | 气候情景 | 交互因子 | q值 | 交互结果 |
---|---|---|---|---|
东北槭 | SSP1-2.6 | BIO12∩BIO10 | 0.75 | 非线性增强 |
东北槭 | SSP2-4.5 | BIO12∩BIO10 | 0.83 | 非线性增强 |
东北槭 | SSP3-7.0 | BIO12∩BIO10 | 0.71 | 非线性增强 |
东北槭 | SSP5-8.5 | BIO12∩BIO10 | 0.75 | 非线性增强 |
色木槭 | SSP1-2.6 | BIO12∩BIO10 | 0.72 | 非线性增强 |
色木槭 | SSP2-4.5 | BIO12∩BIO10 | 0.72 | 非线性增强 |
色木槭 | SSP3-7.0 | BIO15∩BIO1 | 0.67 | 非线性增强 |
色木槭 | SSP5-8.5 | BIO15∩BIO10 | 0.67 | 非线性增强 |
茶条槭 | SSP1-2.6 | BIO15∩BIO10 | 0.73 | 非线性增强 |
茶条槭 | SSP2-4.5 | BIO5∩BIO2 | 0.72 | 非线性增强 |
茶条槭 | SSP3-7.0 | BIO15∩BIO1 | 0.67 | 非线性增强 |
茶条槭 | SSP5-8.5 | BIO15∩BIO8 | 0.74 | 非线性增强 |
紫花槭 | SSP1-2.6 | BIO17∩BIO10 | 0.71 | 非线性增强 |
紫花槭 | SSP2-4.5 | BIO17∩BIO10 | 0.77 | 非线性增强 |
紫花槭 | SSP3-7.0 | BIO17∩BIO2 | 0.69 | 非线性增强 |
紫花槭 | SSP5-8.5 | BIO17∩BIO11 | 0.71 | 非线性增强 |
[1] | BABST F, BOURIAUD O, POULTER B, et al., 2019. Twentieth century redistribution in climatic drivers of global tree growth[J]. Science Advances, 5(1): eaat4313. |
[2] | CHOI J, LEE S, 2022. Principal bioclimatic variables of ten dominant plant species in Korea wetland using the Maxent model[J]. Ecological Engineering: The Journal of Ecotechnology. 183: 106729. |
[3] |
CHRISTIAN J I, BASARA J B, HUNT E D, et al., 2021. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 12(1): 6330.
DOI PMID |
[4] | COBOS M E, PETERSON A T, BARVE N, et al., 2019. Kuenm: An R package for detailed development of ecological niche models using Maxent[J]. PeerJ Computer Science, 7: e6281. |
[5] |
GANTOIS J, 2022. New tree-level temperature response curves document sensitivity of tree growth to high temperatures across a US-wide climatic gradient[J]. Global Change Biology, 28(20): 6002-6020.
DOI PMID |
[6] | HE Y L, MA J M, CHEN G S, 2023. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model[J]. Ecological Indicators, 154: 110790. |
[7] | HIGGINS S I, CONRADI T, MUHOKO E, 2023. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends[J]. Nature Geoscience, 16(2): 147-153. |
[8] | KRAMER-SCHADT S, NIEDBALLA J, PILGRIM J D, et al., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models[J]. Diversity and Distributions, 19(11): 1366-1379. |
[9] | LAMCHIN M, LEE W K, JEON S W, et al., 2017. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data[J]. Science of the Total Environment, 618: 1089-1095. |
[10] | LI J J, FAN G, HE Y, 2020. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis[J]. The Science of the Total Environment, 698: 134141. |
[11] | LIU D T, YANG J B, CHEN S Y, et al., 2022. Potential distribution of threatened maples in China under climate change: Implications for conservation[J]. Global Ecology and Conservation, 40: e02337. |
[12] | MEROW C, SMITH M J, SILANDER J J, 2013. A practical guide to MaxEnt for modeling species distributions: What it does, and why inputs and settings matter[J]. Ecography, 36(10): 1058-1069. |
[13] | MOYA W, JACOME G, YOO C K, 2017. Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands Ecuador[J]. Ecology and Evolution, 7(13): 4881-4890. |
[14] | MURPHY S J, SMITH A, 2021. What can community ecologists learn from species distribution models?[J]. Ecosphere, 12(12): e03864. |
[15] | PARVEEN S, KAUR S, BAISHYA R, et al., 2022. Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling[J]. Environmental Monitoring and Assessment, 194(12): 1-17. |
[16] | PHILLIPS S J, ANDERSON R P, SCHAPIRE R E, 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190(3-4): 231-259. |
[17] |
QUETIN G R, ANDEREGG L D L, BOVING I, et al., 2023. Observed forest trait velocities have not kept pace with hydraulic stress from climate change[J]. Global Change Biology, 29(18): 5415-5428.
DOI PMID |
[18] | REICH P B, SENDALL K M, STEFANSKI A, et al., 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 562(7726): 263-267. |
[19] | SANG Y H, REN H L, SHI X L, et al., 2021. Improvement of soil moisture simulation in Eurasia by the Beijing Climate Center climate system model from CMIP5 to CMIP6[J]. Advances in Atmospheric Sciences, 38(2): 237-252. |
[20] | SILLERO N, ARENAS-CASTRO S, ENRIQUEZ-URZELAI U, et al., 2021. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling[J]. Ecological Modelling, 456: 109671. |
[21] | TREVES A, TERENZIANI A, ANGST C, et al., 2022. Predicting habitat suitability for Castor fiber reintroduction: MaxEnt vs SWOT-Spatial multicriteria approach[J]. Ecological Informatics, 72: 101895. |
[22] |
VALLADARES F, MATESANZ S, GUILHAUMON F, et al., 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change[J]. Ecology Letters, 17(11): 1351-1364.
DOI PMID |
[23] | WARREN D L, GLOR R E, 2010. ENMTools: A toolbox for comparative studies of environmental niche models[J]. Ecogrphy, 33(3): 607-611. |
[24] | WARREN D L, WRIGHT A N, SEIFERT S N, et al., 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern[J]. Diversity and Distributions, 20(3): 334-343. |
[25] | WIENS J J, 2016. Climate-related local extinctions are already widespread among plant and animal species[J]. Plos Biology, 14(12): e2001104. |
[26] | WILLIAMS S E, SHOO L P, ISAAC J L, et al., 2009. Towards an integrated framework for assessing the vulnerability of species to climate change[J]. PLos Biology, 6(12): 2621-2626. |
[27] | YU L F, LENG G Y, PYTHON A, 2021. Varying response of vegetation to sea ice dynamics over the Arctic[J]. Science of the Total Environment, 799(4): 149378. |
[28] |
ZHENG L L, GAIRE N P, SHI P L, 2021. High-altitude tree growth responses to climate change across the Hindu Kush Himalaya[J]. Journal of Plant Ecology, 14(5): 829-842.
DOI |
[29] | ZHENG P F, WANG D D, JIA G D, et al., 2022. Variation in water supply leads to different responses of tree growth to warming[J]. Forest Ecosystems, 9: 100003. |
[30] | ZHU Y K, ZHANG J T, ZHANG Y Q, et al., 2019. Responses of vegetation to climatic variations in the desert region of northern China[J]. Catena, 175: 27-36. |
[31] | ZUIDEMA P A, BABST F, GROENENDIJK P, et al., 2022. Tropical tree growth driven by dry season climate variability[J]. Nature Geoscience, 15(4): 269-276. |
[32] |
郭杰, 刘小平, 张琴, 等, 2017. 基于Maxent模型的党参全球潜在分布区预测[J]. 应用生态学报, 28(3): 992-1000.
DOI |
GUO J, LIU X P, ZHANG Q, et al., 2017. Prediction for the potential distribution area of Codonopsis pilosula at global scale based on maxent model[J]. Chinese Journal of Applied Ecology, 28(3): 992-1000.
DOI |
|
[33] | 李文庆, 徐洲锋, 史鸣明, 等, 2019. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测[J]. 生态学报, 39(9): 3224-3234. |
LI W Q, XU Z F, SHI M M, et al., 2019. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb in Asia under different climate situation[J]. Acta Ecologica Sinica, 39(9): 3224-3234. | |
[34] | 孟影, 马姜明, 王永琪, 等, 2020. 基于Maxent模型的檵木分布格局模拟[J]. 生态学报, 40(22): 8287-8296. |
MENG Y, MA J M, WANG Y Q, et al., 2020. Prediction of distribution area of Loropetalum chinese based on maxent model[J]. Acta Ecologica Sinica, 40(22): 8287-8296. | |
[35] | 彭仲韬, 郭嘉兴, 王艺璇, 等, 2023. 小兴安岭3种槭树不同生长期叶性状变异及相关性分析[J]. 南京林业大学学报(自然科学版), 48(1): 131-139. |
PENG Z T, GUO J X, WANG Y X, et al., 2023. Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 48(1): 131-139. | |
[36] | 邱浩杰, 孙杰杰, 徐达, 等, 2020. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报, 37(1): 1-8. |
QIU H J, XU J J, XU D, et al., 2020. MaxEnt model based prediction of potential distribution of Liriodendron chinese in China[J]. Journal of Zhejiang A & F University, 37(1): 1-8. | |
[37] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[38] | 魏俊, 朱坤, 陈文德, 等, 2021. 基于Maxent模型的西南地区香果树地理分布预测研究[J]. 中国野生植物资源, 40(8): 86-95. |
WEI J, ZHU K, CHEN W D, et al., 2021. Prediction of geographical distribution of Emmenopterys henryi in southwest China based on maxent model[J]. Chinese Wild Plant Resources, 40(8): 86-95. | |
[39] | 谢朋, 徐丹, 于海媛, 等, 2014. 假色槭种子透水性及内源抑制物质的初步研究[J]. 中国农学通报, 30(22): 53-58. |
XIE P, XU D, YU H Y, et al., 2014. Effects of seed permability and endogenesis inhibitory substances of Acer pseudosieboldanum seeds[J]. Chinese Agricultural Science Bulletin, 30(22): 53-58. | |
[40] | 徐小琼, 鲁燕云, 朱颖, 等, 2024. 基于最大熵模型的我国黄芩生态适宜性研究[J]. 中国中医药信息杂志, 31(2): 1-5. |
XU X Q, LU Y Y, ZHU Y, et al., 2024. Study on ecological suitability of Scutellaria baicalensis Georgi in China based on maxent model[J]. Chinese Journal of Information on Traditional Chinese Medicine, 31(2): 1-5. | |
[41] | 张金峰, 葛树森, 李玉堂, 等, 2022. 长白山9种槭树的翅果扩散及种子萌发研究[J]. 生态学报, 42(4): 1441-1449. |
ZHANG J F, GE S S, LI Y T, et al., 2022. Dispersal and germination of nine Acer L (Acer, spp) trees in Changbai Mountain area[J]. Acta Oecologica, 42(4): 1441-1449. | |
[42] | 张军保, 张振全, 沈海龙, 等, 2008. 色木槭种皮透水性与种子浸提液生物效应的研究[J]. 安徽农业科学, 36(20): 8571-8574. |
ZHANG J B, ZHANG Z Q, SHEN H L, et al., 2008. Water permeability of seed coat and bio-effect of seed extracting solution of Acer mono maxim[J]. Journal of Anhui Agricultural Sciences, 36(20): 8571-8574. | |
[43] | 赵儒楠, 何倩倩, 褚晓洁, 等, 2019. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 30(11): 3833-3843. |
ZHAO R N, HE Q Q, CHU X J, et al., 2019. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chinese Journal of Applied Ecology, 30(11): 3833-3843. |
[1] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[2] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[3] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[4] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[5] | CHEN Xiaonan, LI Qiongwen, YU Jianping, YU Shunhai, LI Shuang, CAO Mingchang. Habitat Suitability Assessment of Syrmaticus ellioti in the Qiangjiangyuan National Park [J]. Ecology and Environment, 2022, 31(9): 1832-1839. |
[6] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[7] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[8] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environment, 2022, 31(7): 1293-1305. |
[9] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[10] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environment, 2022, 31(6): 1080-1090. |
[11] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environment, 2022, 31(11): 2111-2123. |
[12] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[13] | ZHOU Dan, ZHANG Juan, LUO Jing, GUO Guang, LI Baohua. Analysis on the Causes of Qinghai Lake Water Level Changes and Prediction of Its Future Trends [J]. Ecology and Environment, 2021, 30(7): 1482-1491. |
[14] | ZHANG Jing, DU Jiaqiang, SHENG Zhilu, ZHANG Yangchengsi, WU Jinhua, LIU Bo. Spatio-temporal Changes of Vegetation Cover and Their Influencing Factors in the Yellow River Basin from 1982 to 2015 [J]. Ecology and Environment, 2021, 30(5): 929-937. |
[15] | HUANG Dong, LI Peng, DONG Nan. Spatial-temporal Differentiation of GS_NDVI in Recent 20 Years and Its Responses to Climate Change and LUCC in the Bohai Coastal Region [J]. Ecology and Environment, 2021, 30(12): 2275-2284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn