Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1160-1168.DOI: 10.16258/j.cnki.1674-5906.2022.06.011
• Research Articles • Previous Articles Next Articles
YU Yanghua1,*(), WU Yingu2, SONG Yanping1, LI Yitong1
Received:
2022-04-06
Online:
2022-06-18
Published:
2022-07-29
Contact:
YU Yanghua
通讯作者:
喻阳华
作者简介:
喻阳华(1984年生),男,副教授,博士,研究方向为喀斯特环境保护与治理。E-mail: yuyanghua2003@163.com
基金资助:
CLC Number:
YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages[J]. Ecology and Environment, 2022, 31(6): 1160-1168.
喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.011
样地 Plot | 林龄 Age/ a | 海拔 Altitude/ m | 坡位 Positions | 坡向 Aspect | 坡度 Slope/ (°) | 密度 Density/ (plant∙hm-2) | 植被覆盖率 Vgetation coverage/ % | 平均树高 Height/ m | 平均冠幅 Average crown width/ m | 产量 Yield/ (plant∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
YD1 | 5-7 | 615 | 中下 | 阳坡 | 5 | 1150 | 100 | 2.7 | 2.5×3 | 6-7 |
YD2 | 10-12 | 621 | 中下 | 阳坡 | 10 | 1150 | 100 | 2.7 | 2.5×3 | 7-8 |
YD3 | 20-22 | 630 | 中下 | 阳坡 | 5 | 1000 | 90 | 3.5 | 3.5×3 | 4-5 |
YD4 | 28-32 | 628 | 中下 | 阳坡 | 5 | 650 | 75 | 4 | 4×5 | 1-1.5 |
Table 1 Basic information of sampling plots
样地 Plot | 林龄 Age/ a | 海拔 Altitude/ m | 坡位 Positions | 坡向 Aspect | 坡度 Slope/ (°) | 密度 Density/ (plant∙hm-2) | 植被覆盖率 Vgetation coverage/ % | 平均树高 Height/ m | 平均冠幅 Average crown width/ m | 产量 Yield/ (plant∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
YD1 | 5-7 | 615 | 中下 | 阳坡 | 5 | 1150 | 100 | 2.7 | 2.5×3 | 6-7 |
YD2 | 10-12 | 621 | 中下 | 阳坡 | 10 | 1150 | 100 | 2.7 | 2.5×3 | 7-8 |
YD3 | 20-22 | 630 | 中下 | 阳坡 | 5 | 1000 | 90 | 3.5 | 3.5×3 | 4-5 |
YD4 | 28-32 | 628 | 中下 | 阳坡 | 5 | 650 | 75 | 4 | 4×5 | 1-1.5 |
样地Plot | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(TP)/(g∙kg-1) | w(TK)/(g∙kg-1) | w(AN)/(mg∙kg-1) | w(AP)/(mg∙kg-1) | w(AK)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
YD1 | 7.97±0.25a | 23.65±4.31a | 2.62±0.34a | 0.43±0.11a | 14.65±0.50a | 175±14.14a | 32.7±5.80a | 253±72.12a |
YD2 | 7.57±0.25ab | 15.3±0.85a | 2.50±0.30a | 0.80±0.20a | 14.35±0.21a | 162±5.66a | 20.2±5.37a | 245±4.24a |
YD3 | 6.53±0.33b | 15.05±2.47a | 2.00±0.52a | 1.11±0.24a | 10.55±0.07a | 222.5±109.01a | 36.65±9.55a | 222±24.04a |
YD4 | 7.32±0.25ab | 16.5±2.26a | 2.12±0.43a | 0.77±0.18a | 14.8±0.14a | 145±29.70a | 33.65±7.28a | 149.5±64.35a |
Table 2 Soil chemical properties in Zanthoxylum planispinum var. dintanensis of different forest ages
样地Plot | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(TP)/(g∙kg-1) | w(TK)/(g∙kg-1) | w(AN)/(mg∙kg-1) | w(AP)/(mg∙kg-1) | w(AK)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
YD1 | 7.97±0.25a | 23.65±4.31a | 2.62±0.34a | 0.43±0.11a | 14.65±0.50a | 175±14.14a | 32.7±5.80a | 253±72.12a |
YD2 | 7.57±0.25ab | 15.3±0.85a | 2.50±0.30a | 0.80±0.20a | 14.35±0.21a | 162±5.66a | 20.2±5.37a | 245±4.24a |
YD3 | 6.53±0.33b | 15.05±2.47a | 2.00±0.52a | 1.11±0.24a | 10.55±0.07a | 222.5±109.01a | 36.65±9.55a | 222±24.04a |
YD4 | 7.32±0.25ab | 16.5±2.26a | 2.12±0.43a | 0.77±0.18a | 14.8±0.14a | 145±29.70a | 33.65±7.28a | 149.5±64.35a |
Figure 3 Correlation heat map among concentration, biomass and stoichiometric ratio of soil microorganisms The circle size indicates the strength of the correlation, the darker the blue, the greater the positive correlation, and the daker the brown, the greater the negative correlation
指标 Index | BAC | FUN | ACT | MBC | MBN | MBP | BAC/FUN | BAC/ACT | FUN/ACT | MBC/MBN | MNC/MBP |
---|---|---|---|---|---|---|---|---|---|---|---|
FUN | 0.054 | 1 | |||||||||
ACT | 0.651 | 0.208 | 1 | ||||||||
MBC | 0.265 | -0.480 | 0.570 | 1 | |||||||
MBN | -0.426 | 0.474 | -0.415 | -0.448 | 1 | ||||||
MBP | 0.583 | -0.157 | 0.396 | 0.165 | 0.02 | 1 | |||||
BAC/FUN | 0.858** | -0.261 | 0.801* | 0.633 | -0.693 | 0.520 | 1 | ||||
BAC/ACT | 0.919** | 0.261 | 0.463 | -0.010 | -0.060 | 0.621 | 0.613 | 1 | |||
FUN/ACT | -0.394 | 0.518 | -0.704 | -0.828* | 0.592 | -0.473 | -0.787* | -0.104 | 1 | ||
MBC/MBN | 0.551 | -0.484 | 0.612 | 0.705 | -0.927** | 0.112 | 0.857** | 0.188 | -0.780* | 1 | |
MBC/MBP | -0.475 | 0.388 | -0.391 | -0.489 | -0.004 | -0.810* | -0.569 | -0.461 | 0.630 | -0.253 | 1 |
MBN/MBP | -0.512 | 0.471 | -0.422 | -0.561 | 0.119 | -0.787* | -0.645 | -0.451 | 0.703 | -0.372 | 0.991** |
Table 3 Pearson's correlation coefficients of soil microbial concentration, biomass and their stochiometric ratios
指标 Index | BAC | FUN | ACT | MBC | MBN | MBP | BAC/FUN | BAC/ACT | FUN/ACT | MBC/MBN | MNC/MBP |
---|---|---|---|---|---|---|---|---|---|---|---|
FUN | 0.054 | 1 | |||||||||
ACT | 0.651 | 0.208 | 1 | ||||||||
MBC | 0.265 | -0.480 | 0.570 | 1 | |||||||
MBN | -0.426 | 0.474 | -0.415 | -0.448 | 1 | ||||||
MBP | 0.583 | -0.157 | 0.396 | 0.165 | 0.02 | 1 | |||||
BAC/FUN | 0.858** | -0.261 | 0.801* | 0.633 | -0.693 | 0.520 | 1 | ||||
BAC/ACT | 0.919** | 0.261 | 0.463 | -0.010 | -0.060 | 0.621 | 0.613 | 1 | |||
FUN/ACT | -0.394 | 0.518 | -0.704 | -0.828* | 0.592 | -0.473 | -0.787* | -0.104 | 1 | ||
MBC/MBN | 0.551 | -0.484 | 0.612 | 0.705 | -0.927** | 0.112 | 0.857** | 0.188 | -0.780* | 1 | |
MBC/MBP | -0.475 | 0.388 | -0.391 | -0.489 | -0.004 | -0.810* | -0.569 | -0.461 | 0.630 | -0.253 | 1 |
MBN/MBP | -0.512 | 0.471 | -0.422 | -0.561 | 0.119 | -0.787* | -0.645 | -0.451 | 0.703 | -0.372 | 0.991** |
指标 Index | RDA1 | RDA2 | RDA3 | RDA4 |
---|---|---|---|---|
特征值 Eigenvalue | 22.59 | 1.07 | 43.87 | 4.08 |
贡献率 Proportion Explained/% | 95.29 | 4.49 | 0.002 | 0.00002 |
累计贡献率Cumulative Proportion/% | 95.29 | 9.98 | 0.99 | 0.99 |
Table 4 Eigenvalues, and their contribution to the variance of RDA
指标 Index | RDA1 | RDA2 | RDA3 | RDA4 |
---|---|---|---|---|
特征值 Eigenvalue | 22.59 | 1.07 | 43.87 | 4.08 |
贡献率 Proportion Explained/% | 95.29 | 4.49 | 0.002 | 0.00002 |
累计贡献率Cumulative Proportion/% | 95.29 | 9.98 | 0.99 | 0.99 |
指标 Index | 贡献率 Contribution/% | Pseudo-F | P |
---|---|---|---|
AK | 63.4 | 10.4 | 0.01 |
pH | 7.1 | 2.6 | 0.19 |
TK | 9.2 | 2.2 | 0.22 |
SOC | 9.7 | 1.8 | 0.23 |
AP | 5.0 | 0.9 | 0.38 |
Table 5 Sequencing and remarkable test of portion soil chemical factors
指标 Index | 贡献率 Contribution/% | Pseudo-F | P |
---|---|---|---|
AK | 63.4 | 10.4 | 0.01 |
pH | 7.1 | 2.6 | 0.19 |
TK | 9.2 | 2.2 | 0.22 |
SOC | 9.7 | 1.8 | 0.23 |
AP | 5.0 | 0.9 | 0.38 |
[1] | ADAIR K L, WRATTEN S, LEAR G, 2013. Soil phosphorus depletion and shifts in plant communities changes bacterial community structure in a long-term grassland management trial[J]. Environmental Microbiology Reports, 5(3): 404-413. |
[2] | BASSETT A, RICHARDSN A E, BAKER G, et al., 2011. Long-term land use effects on soil microbial community structure and function[J]. Applied Soil Ecology, 51(1): 66-78. |
[3] | BOYLE S A, YARWOOD R R, BOTTOMLEY P J, et al., 2008. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon[J]. Soil Biology and Biochemistry, 40(2): 443-451. |
[4] | BUCHKOWSKI R W, SCHMITZ O J, BRADFORD M A, 2015. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling[J]. Ecology, 96(4): 1139-1149. |
[5] | CAO Y S, FU S L, ZOU X M, et al., 2010. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China[J]. European Journal of Soil Biology, 46(2): 128-135. |
[6] | CLEVELAND C C, DANIEL L, 2007. C:N:Pstoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemitry, 85: 235-252. |
[7] | DEVI N B, YADAVA P S, 2006. Seasonal dynamics in soil microbial C, N and P in a mixed-oxk forest ecosystem of Manipur, North-east India[J]. Applied soil ecology, 31(3): 220-227. |
[8] | FENÁNDEZ-CALVINO D, BAATH E, 2010. Growth response of the bacterial community to pH in soils differing in pH[J]. FEMS Microbiology Ecology, 73(1): 149-156. |
[9] | HE K Q, DU R L, JIANG W F, 2009. Contrastive analysis of karst collapses and the distribution rules in northern and southern China[J]. Environmental Earth Sciences, 59(6): 1309-1318. |
[10] | HE Z L, YANG X E, BALIGAR V C, et al., 2003. Microbiological and biochemical indexing systems for assessing quality of acid soils[J]. Advances in Agronomy, 78(2): 89-138. |
[11] | HEUCK C, WEIG A, SPOHN M, 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus[J]. Soil Biology&Biochemistry, 85: 119-129. |
[12] | HǑGBERG M N, HUGBERG P, MYROLD D D, 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?[J]. Oecologia, 105(4): 590-601. |
[13] | IMBERGER K T, CHUI C Y, 2001. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region[J]. Bioligy and Forest of Soils, 33(2): 105-110. |
[14] | KRAJICK K, 2006. Living the high life: the mountaintop environment of the Andes harbors a Noah's ark of previously undocumented species[J]. Natural History, 115(7): 44-55. |
[15] | LEFF J W, JONES S E, PROBER S M, et al., 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(35): 10967-10972. |
[16] | LI Y, WU J S, LIU S L, et al., 2012. Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J]. Global Biogeochemical Cycles, 26(4): GB4002. |
[17] | MITCHELL R J, HESTER A J, CAMPMAN S J, et al., 2013. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation?[J]. Plant and Soil, 351(1-2): 355-362. |
[18] | PAUL E A, CLARK F E, 1996. Soil microbiology, ecology and biochemistry[J]. Sun Diego: Academic Press. |
[19] | RAMOS B, LUCAS GARCIA J A, PROBANZA A, et al., 2003. Influence of an indigenous European alder (Alnus glutinosa L·Gaerth) rhizobacterium (Bacillus pumilus) on the growth of alder and its rhizosphere microbial community structure in two soils[J]. New Forests, 25(2): 149-159. |
[20] | SONG M, PENG W X, DU H, et al., 2019. Responses of soil and Microbial C:N:P stoichiometry to vegetation succession in a karst region of southwest China[J]. Forests, 10(9): 755. |
[21] | TAYLOR A R, WANGJ R, CHEN H Y H, 2007. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada[J]. Canada Journal of Forest Research, 37(11): 2260-2269. |
[22] | WANG M, QU L Y, MA K M, et al., 2013. Soil microbial properties under different vegetation types on Mountain Han[J]. Science China Life Sciences, 56(6): 561-570. |
[23] | WANG S J, LIU Q M, ZHANG D F, 2004. Karst rocky desertification in southwestern China: Geomorphology, land use, impact and rehabilitation[J]. Land Degradation & Development, 15(2): 115-121. |
[24] | WU Z Y, HAACK S E L, LIN W, 2015. Soil microbical community structure and metabolic activity of Pinus elliottii plantations across different stand ages in a subtropical area[J]. Plos One, 8: 2115-2121. |
[25] |
XIAO L, BI Y L, DU S Z, et al., 2021. Response of ecological stoichiometry and stoichiometric homeostasis in the plant-litter-soil system to re-vegetation type in arid mining subsidence areas[J]. Journal of Arid Environment, DOI: 10.1016/j.jaridenv.2020.104298.
DOI URL |
[26] | XU Z F, HU R, XIONG P, et al., 2010. Initial soil responses to experimental warning in two contrasting forest ecosystems, Eastern Tibetan Platean China: nutrient availabilities, microbial properties and enzyme activities[J]. Applied Soil Ecology, 46(2): 291-299. |
[27] |
ZHANG J Y, YANGX M, SONG Y H, et al., 2020. Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau-Ecological stoichiometry[J]. Geoderma, DOI: 10.1016/j.jaridenv.2020.104298.
DOI URL |
[28] | ZHANG W, QIAO W J, GAO D X, et al., 2018. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China[J]. Catena, 161: 85-95. |
[29] | ZHONG Z K, ZHANG X Y, WANG X, et al., 2020. Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China[J]. Plant and Soil, 448(1): 183-200. |
[30] | ZHOU Z H, WANG C K, 2015. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems[J]. Biogeosciences Discussions, 12(22): 6751-6760. |
[31] | ZHUW K, XU Y X, WANG Z C, et al., 2021. Soil-microbial stoichiometry of Eucalyptus urophylla×E. grandis plantation at different growth stages[J]. Journal of Zhejiang A & F University, 38(4): 692-702. |
[32] | ZOU J, YU L F, HUANG Z S, 2019. Variation of leaf carbon isotope in plants in different lithological habitats in a karst area[J]. Forest, 10(4): 356. |
[33] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agricultural analysis[M]. The third edition. Beijing: China Agricultural Publishing House. | |
[34] | 范媛媛, 李懿, 李启迪, 2019. 不同林龄油松土壤微生物、酶活性和养分特征[J]. 水土保持研究, 26(6): 58-64. |
FAN Y Y, LI Y, LI Q D, 2019. Microbe enzymatic activity and nutrient contents of soils in different stand ages of Pinus tabuliformus[J]. Research of Soil and Water Conservation, 26(6): 58-64. | |
[35] | 洪丕征, 刘世荣, 王晖, 等, 2016. 南亚热带红椎和格木人工幼龄林土壤微生物群落结构特征[J]. 生态学报, 36(14): 4496-4508. |
HONG P Z, LIU S R, WANG H, et al., 2016. Characteristics of soil microbial community structure in two young plantations of Castanopsis hystrix and Erythrophleun fordii in subtropical China[J]. Acta Ecologica Sinica, 36(14): 4496-4508. | |
[36] | 胡宗达, 刘世荣, 刘兴良, 等, 2021. 川西亚高山天然次生林不同演替阶段土壤微生物生物量及其化学计量特征[J]. 生态学报, 41(12): 4900-4921. |
HU Z D, LIU S R, LIU X L, et al., 2021. Soil and soil microbial bimass contents and C:N:P stoichiometry at different succession stages of natural secondary forest in sub-alpine area of western Sichuan, China[J]. Acta Ecologica Sinica, 41(12): 4900-4921. | |
[37] | 李万年, 黄则月, 赵春梅, 等, 2020. 望天树人工幼林土壤微生物量碳氮及养分特征[J]. 北京林业大学学报, 562(15): 145-154. |
LI W N, HUANG Z Y, ZHAO C M, et al., 2020. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinesis[J]. Journal of Beijing Forestry University, 42(12): 51-62. | |
[38] | 李雪萍, 李建宏, 漆永红, 等, 2017. 青稞根腐病对根际土壤微生物及酶活性的影响[J]. 生态学报, 37(17): 5640-5649. |
LI X P, LI H J, QI Y H, et al., 2017. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity[J]. Acta ecoligica sinica, 37(17): 5640-5649. | |
[39] | 林先贵, 2010. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社. |
LIN X G, 2010. Principles and methods of soil microbial research[M]. Beijing: Higher Education Press. | |
[40] |
刘宝, 吴文峰, 林思祖, 等, 2019. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 30(6): 1901-1910.
DOI |
LIU B, WU W F, LIN S Z, et al., 2019. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests[J]. Chinese Journal of Applied Ecology, 30(6): 1901-1910.
DOI |
|
[41] | 刘方, 王世杰, 刘元生, 等, 2005. 喀斯特石漠化过程土壤质量变化及生态环境影响评价[J]. 生态学报, 25(3): 639-644. |
LIU F, WANG S J, LIU Y S, et al., 2005. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environmentt[J]. Acta ecologica sinica, 25(3): 639-644. | |
[42] | 龙健, 廖洪凯, 李娟, 等, 2012. 基于冗余分析的典型喀斯特山区土壤-石漠化关系研究[J]. 环境科学, 33(6): 2131-2138. |
LONG J, LIAO H K, LI J, et al., 2012. Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis[J]. Environmental Science, 33(6): 2131-2138. | |
[43] | 牛小云, 孙晓梅, 陈东升, 等, 2015. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 26(9): 2663-2672. |
NIU X Y, SUN X M, CHEN D S, 2015. Soil microorganisms, nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 26(9): 2663-2673. | |
[44] |
万军, 2003. 贵州省喀斯特地区土地退化与生态重建研究进展[J]. 地球科学进展, 18(3): 447-453.
DOI |
WAN J, 2003. Land degradation and ecological rehabilitation in karst areas of Guizhou province southwestern China[J]. Advance in earth sciences, 18(3): 447-453. | |
[45] | 王传杰, 王齐齐, 徐虎, 等, 2018. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J]. 生态学报, 38(11): 3848-3858. |
WANG C J, WANG Q Q, XU H, et al., 2018. Carbon nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland[J]. Acta Ecologica Sinica, 38(11): 3848-3858. | |
[46] | 王理德, 姚拓, 王方琳, 等, 2016. 石羊河下游退耕地土壤微生物变化及土壤酶活性[J]. 生态学报, 36(15): 4769-4779. |
WANG L D, YAO T, WANG F L, et al., 2016. Soil microbial and soil enzyme activity in a discontinued farmland by the Lower Shiyang River[J]. Acta Ecologica Sinica, 36(15): 4769-4779. | |
[47] |
王雪梅, 闫帮国, 赵广, 等, 2017. 云南元谋不同海拔土壤微生物对车桑子碳、氮、磷化学计量特征及土壤特性的影响[J]. 植物生态学报, 41(3): 311-324.
DOI |
WANG X M, YAN B G, ZHAO G, et al., 2017. Effects of microorganism on carbon, carbon and phosphorus of Dodonaea visxosa and the soils from different elevations in Yuanmou, Yunnan, China[J]. Chinese Journal of Plant Ecology, 41(3): 311-324. | |
[48] |
王薪琪, 韩轶, 王传宽, 2017. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 41(6): 597-609.
DOI |
WANG X Q, HAN Y, WANG C K, 2017. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao'ershan region, Northeast China[J]. Chinese Journal of Plant Ecology, 41(6): 597-609. | |
[49] | 杨凯, 朱教君, 张金鑫, 2009. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 29(10): 5500-5507. |
YANG K, ZHU J J, ZHANG J X, 2009. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forest with different ages in Northeastern China[J]. Acta Ecologica Sinica, 29(10): 5500-5507. | |
[50] | 赵辉, 周运超, 任启飞, 2020. 不同林龄马尾松人工林土壤微生物群落结构和功能多样性演变[J]. 土壤学报, 57(1): 227-238. |
ZHAO H, ZHOU Y C, REN Q F, 2020. Evolution of soil microbial community structure and functional diversity in Pinus Massoniana plantations with age of stand[J]. Acta Pedologica Sinica, 57(1): 227-238. |
[1] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[2] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[5] | XIA Meijun, LI Jian, YAN Yongcan. Spatial-temporal Patterns and Evolution Characteristics of Ecological Well-being Performance in Beijing-Tianjin-Hebei Urban Agglomeration [J]. Ecology and Environment, 2023, 32(4): 814-824. |
[6] | HE Beibei, FAN Shanshan, HONG Nian, LIU An. Variations of Roof Stormwater Quality under Different Storage Types [J]. Ecology and Environment, 2023, 32(3): 567-578. |
[7] | WANG Chengwu, LUO Junjie, TANG Honghu. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model [J]. Ecology and Environment, 2023, 32(2): 215-225. |
[8] | CHEN Zhizhong, ZAN Mei, YANG Xuefeng, DONG Yu. Prediction of Forest Vegetation Carbon Storage in Xinjiang [J]. Ecology and Environment, 2023, 32(2): 226-234. |
[9] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[10] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[11] | LEI ShePing, FAN YanXiang, XIE JianCang. Analysis of Urban Industrial Sewage Discharge Decoupling and Driving Effect Decomposition on the Loess Plateau: A Case Study of Shaanxi Province [J]. Ecology and Environment, 2023, 32(2): 351-360. |
[12] | HE Yating, HE Youjun, WANG Peng, XIE Hesheng. Effects of Different Forest Management Regimes on Soil Organic Carbon in Aggregate Fractions in Natural Secondary Quercus mongolica Forests [J]. Ecology and Environment, 2023, 32(1): 11-17. |
[13] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[14] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[15] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn