Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1101-1109.DOI: 10.16258/j.cnki.1674-5906.2022.06.004
• Research Articles • Previous Articles Next Articles
ZHU Jinfu1(), HUANG Ruiling1,2, DONG Zhiqiang1, MAO Xiaoning1, ZHOU Huakun3,*(
)
Received:
2022-01-21
Online:
2022-06-18
Published:
2022-07-29
Contact:
ZHOU Huakun
朱锦福1(), 黄瑞灵1,2, 董志强1, 毛晓宁1, 周华坤3,*(
)
通讯作者:
周华坤
作者简介:
朱锦福(1972年生),男,副教授,主要研究方向为草地生态学。E-mail: zjf@qhnu.edu.cn
基金资助:
CLC Number:
ZHU Jinfu, HUANG Ruiling, DONG Zhiqiang, MAO Xiaoning, ZHOU Huakun. Response of the Soil Bacterial Community to Nitrogen Addition in Alpine Wetland of Qinghai Lake[J]. Ecology and Environment, 2022, 31(6): 1101-1109.
朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.004
土层 Soil | 处理 Treatment | pH | 含水率 MC/% | w(TC)/(g∙kg-1) | w(OC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(NH4+-N)/(mg∙kg-1) | w(NO3--N)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 7.30±0.10 | 518.23±22.11a | 12.36±2.85a | 8.48±0.51a | 7.94±1.28a | 2.83±0.55a | 1.67±0.67a |
N2 | 7.43±0.15 | 554.00±27.58a | 11.62±0.60a | 8.45±0.67a | 6.10±1.44a | 2.03±0.51b | 3.00±1.00b | |
N5 | 7.40±0.20 | 569.83±46.39a | 13.40±0.67b | 9.52±1.39b | 4.78±2.59ab | 2.80±1.51ab | 3.07±2.37b | |
N10 | 7.47±0.15 | 580.17±32.40a | 13.30±3.13b | 9.69±1.61b | 3.64±2.77b | 2.77±0.64a | 2.00±0.35ab | |
深层 Deep soil | N0 | 7.33±0.21 | 465.03±20.27b | 11.89±2.94c | 7.55±2.45c | 1.52±0.60c | 3.47±1.59c | 1.43±0.50c |
N2 | 7.37±0.06 | 493.07±66.74b | 9.73±0.28d | 6.34±0.62d | 5.22±3.49c | 1.53±0.93d | 2.40±1.47d | |
N5 | 7.57±0.06 | 534.47±26.70c | 12.12±0.97c | 6.69±1.30d | 10.39±1.04d | 4.00±0.72c | 1.17±0.40c | |
N10 | 7.40±0.17 | 523.03±52.54c | 10.68±2.62c | 6.22±2.62d | 7.31±3.01cd | 3.70±1.64c | 1.60±1.31c |
Table 1 Effects of different nitrogen addition treatments on soil physical and chemical properties
土层 Soil | 处理 Treatment | pH | 含水率 MC/% | w(TC)/(g∙kg-1) | w(OC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(NH4+-N)/(mg∙kg-1) | w(NO3--N)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 7.30±0.10 | 518.23±22.11a | 12.36±2.85a | 8.48±0.51a | 7.94±1.28a | 2.83±0.55a | 1.67±0.67a |
N2 | 7.43±0.15 | 554.00±27.58a | 11.62±0.60a | 8.45±0.67a | 6.10±1.44a | 2.03±0.51b | 3.00±1.00b | |
N5 | 7.40±0.20 | 569.83±46.39a | 13.40±0.67b | 9.52±1.39b | 4.78±2.59ab | 2.80±1.51ab | 3.07±2.37b | |
N10 | 7.47±0.15 | 580.17±32.40a | 13.30±3.13b | 9.69±1.61b | 3.64±2.77b | 2.77±0.64a | 2.00±0.35ab | |
深层 Deep soil | N0 | 7.33±0.21 | 465.03±20.27b | 11.89±2.94c | 7.55±2.45c | 1.52±0.60c | 3.47±1.59c | 1.43±0.50c |
N2 | 7.37±0.06 | 493.07±66.74b | 9.73±0.28d | 6.34±0.62d | 5.22±3.49c | 1.53±0.93d | 2.40±1.47d | |
N5 | 7.57±0.06 | 534.47±26.70c | 12.12±0.97c | 6.69±1.30d | 10.39±1.04d | 4.00±0.72c | 1.17±0.40c | |
N10 | 7.40±0.17 | 523.03±52.54c | 10.68±2.62c | 6.22±2.62d | 7.31±3.01cd | 3.70±1.64c | 1.60±1.31c |
土层 Soil | 处理 Treatment | 有效读数 Effective Reads | OTU数 OTU number | 细菌数量 Bacteria number/(106 cfu∙g-1) | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 76926 | 1557 | 9.43 | 1475.02 | 1491.83 | 0.9938 | 8.63 |
N2 | 75666 | 1585 | 6.68 | 1511.91 | 1545.14 | 0.9943 | 8.74 | |
N5 | 75691 | 1561 | 108.81 | 1458.24 | 1489.66 | 0.9936 | 8.48 | |
N10 | 76087 | 1519 | 78.35 | 1451.39 | 1483.19 | 0.9949 | 8.81 | |
深层 Deep soil | N0 | 76835 | 1465 | 7.26 | 1370.09 | 1385.19 | 0.9932 | 8.38 |
N2 | 76945 | 1507 | 3.13 | 1412.17 | 1434.09 | 0.9898 | 8.21 | |
N5 | 77097 | 1572 | 104.65 | 1455.71 | 1475.91 | 0.9876 | 8.32 | |
N10 | 76618 | 1532 | 49.57 | 1458.71 | 1496.97 | 0.9918 | 8.31 |
Table 2 Soil bacterial abundance and diversity index under different nitrogen addition treatments
土层 Soil | 处理 Treatment | 有效读数 Effective Reads | OTU数 OTU number | 细菌数量 Bacteria number/(106 cfu∙g-1) | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 76926 | 1557 | 9.43 | 1475.02 | 1491.83 | 0.9938 | 8.63 |
N2 | 75666 | 1585 | 6.68 | 1511.91 | 1545.14 | 0.9943 | 8.74 | |
N5 | 75691 | 1561 | 108.81 | 1458.24 | 1489.66 | 0.9936 | 8.48 | |
N10 | 76087 | 1519 | 78.35 | 1451.39 | 1483.19 | 0.9949 | 8.81 | |
深层 Deep soil | N0 | 76835 | 1465 | 7.26 | 1370.09 | 1385.19 | 0.9932 | 8.38 |
N2 | 76945 | 1507 | 3.13 | 1412.17 | 1434.09 | 0.9898 | 8.21 | |
N5 | 77097 | 1572 | 104.65 | 1455.71 | 1475.91 | 0.9876 | 8.32 | |
N10 | 76618 | 1532 | 49.57 | 1458.71 | 1496.97 | 0.9918 | 8.31 |
指标 Index | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | ||||
pH | 0.051 | 0.566 | 0.271 | 0.517 | 0.344 | 0.645* | 0.317 | 0.585* | |||
含水率MC | -0.146 | 0.729** | -0.066 | 0.739** | -0.066 | 0.273 | 0.234 | -0.060 | |||
有机碳OC | -0.419 | 0.706** | -0.400 | 0.683* | 0.167 | 0.300 | 0.322 | 0.320 | |||
全碳TC | -0.659* | -0.003 | -0.552 | 0.033 | -0.045 | -0.618* | -0.278 | -0.151 | |||
氨态氮NH4+-N | -0.346 | 0.123 | -0.515 | 0.154 | -0.775** | 0.242 | -0.664* | 0.467 | |||
硝态氮NO3--N | 0.487 | -0.310 | 0.724** | -0.340 | 0.151 | -0.203 | 0.056 | -0.662* | |||
全氮TN | 0.208 | 0.631* | 0.070 | 0.637* | 0.015 | 0.407 | -0.211 | 0.348 |
Table 3 Pearson correlation analysis between soil bacterial diversity and soil physical and chemical properties
指标 Index | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | ||||
pH | 0.051 | 0.566 | 0.271 | 0.517 | 0.344 | 0.645* | 0.317 | 0.585* | |||
含水率MC | -0.146 | 0.729** | -0.066 | 0.739** | -0.066 | 0.273 | 0.234 | -0.060 | |||
有机碳OC | -0.419 | 0.706** | -0.400 | 0.683* | 0.167 | 0.300 | 0.322 | 0.320 | |||
全碳TC | -0.659* | -0.003 | -0.552 | 0.033 | -0.045 | -0.618* | -0.278 | -0.151 | |||
氨态氮NH4+-N | -0.346 | 0.123 | -0.515 | 0.154 | -0.775** | 0.242 | -0.664* | 0.467 | |||
硝态氮NO3--N | 0.487 | -0.310 | 0.724** | -0.340 | 0.151 | -0.203 | 0.056 | -0.662* | |||
全氮TN | 0.208 | 0.631* | 0.070 | 0.637* | 0.015 | 0.407 | -0.211 | 0.348 |
[1] | FAULWETTER J L, GAGNON V, SUNDBERG C, et al., 2009. Microbial processes influencing performance of treatment wetlands: A review[J]. Ecological Engineering, 35(6): 987-1004. |
[2] | FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. The Ecological Society of America, 88(6): 1354-1364. |
[3] | HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al., 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments[J]. The ISME Journal, 4(6): 829-838. |
[4] | KARIMI B, TERRAT S, DEQUIEDT S, et al., 2018. Biogeography of Soil Bacteria and Archaea Across France[J]. Science Advances, 4(7): 1-14. |
[5] | KUYPERS M M, HANNAH M, BORAN K, 2018. The Microbial Nitrogen-cycling Network[J]. Nature Reviews, 16(5): 263-276. |
[6] | MA K, ZHANG Y, TANG S, et al., 2016. Spatial distribution of soil organic carbon in the Zoige Alpine Wetland, Northeastern Qinghai-Tibet Plateau[J]. Catena, 144: 102-108. |
[7] | YANG X C, HAN Z Z, RUAN X Y, et al., 2019. Composting swine carcasses with nitrogen transformation microbial strains: Succession of microbial community and nitrogen functional genes[J]. Science of The Total Environment, 688: 555-566. |
[8] | ZENG J, LIU X J, SONG L et al., 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 92: 41-49. |
[9] | ZHANG X, ZHAO X, ZHANG M, 2012. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge[J]. Fems Microbiology Ecology, 80(1): 9-18. |
[10] | 陈泓硕, 马大龙, 姜雪薇, 等, 2020. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响[J]. 环境科学学报, 40(4): 1443-1451. |
CHEN H S, MA D L, JIANG X W, et al., 2020. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland[J]. Acta Scientiae Circumstantiae, 40(4): 1443-1451. | |
[11] | 陈谦, 张新雄, 赵海, 等, 2010. 生物有机肥中几种功能微生物的研究及应用概况[J]. 应用与环境生物学报, 16(2): 294-300. |
CHEN Q, ZHANG X X, ZHAO H, et al., 2010. Advance in research and application of some functional microbes in bio-organic fertilizer[J]. Chinese Journal of Applied and Environmental Biology, 16(2): 294-300. | |
[12] | 陈伟, 季秀玲, 张琦, 等, 2019. 纳帕海高原湿地真菌群落多样性和组成的分布[J]. 微生物学通报, 46(3): 494-503. |
CHEN W, JI X L, ZHANG Q, et al., 2019. Diversity and composition of fungal community in Napahai plateau wetlands[J]. Microbiology China, 46(3): 494-503. | |
[13] | 葛怡情, 王学霞, 闫玉龙, 等, 2019. 增温和增氮及其交互作用对藏北高寒草甸植物群落结构与物种多样性的影响[J]. 生态环境学报, 28(11): 2185-2191. |
GE Y Q, WANG X X, YAN Y L, et al., 2019. Effects of warming and nitrogen addition on plant community structure and species diversity of alpine meadow in northern Tibet[J]. Ecology and Environmental Sciences, 28(11): 2185-2191. | |
[14] | 郭萍萍, 2015. 模拟氮沉降对土壤微生物多样性的影响[D]. 福州: 福建农林大学: 26. |
GUO P P, 2015. Effects of simulated nitrogen deposition on soil microbial diversity[D]. Fuzhou: Fujian Agriculture and Forestry University: 26. | |
[15] | 韩其飞, 李莹莹, 彭开兵, 等, 2021. 大气氮沉降对中亚草地生态系统净初级生产力的影响[J]. 生态学报, 41(21): 8545-8555. |
HAN Q F, LI Y Y, PENG K B, et al., 2021. Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia[J]. Acta Ecologica Sinica, 41(21): 8545-8555. | |
[16] | 李成一, 李希来, 杨元武, 等, 2020. 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响[J]. 草业学报, 29(12): 161-170. |
LI C Y, LI X L, YANG Y W, et al., 2020. Effect of nitrogen addition on soil bacterial diversity in alpine degraded grasslands of differing slope[J]. Acta Prataculturae Sinica, 29(12): 161-170. | |
[17] | 李甜甜, 胡泓, 王金爽, 等, 2016. 湿地土壤微生物群落结构与多样性分析方法研究进展[J]. 土壤通报, 47(3): 758-762. |
LI T T, HU H, WANG J S, et al., 2016. Progress in research methods of soil microbial structure and diversity in wetlands[J]. Chinese Journal of Soil Science, 47(3): 758-762. | |
[18] | 李梓萌, 刘鞠善, 吴金凤, 等, 2021. 氮沉降对草地植物生殖策略的影响[J]. 中国草地学报, 43(7): 106-114. |
LI Z M, LIU J S, WU J F, et al., 2021. Effects of nitrogen deposition on grassland plant reproduction strategies[J]. Chinese Journal of Grassland, 43(7): 106-114. | |
[19] | 林春英, 李希来, 张玉欣, 等, 2021. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学, 42(8): 3971-3984. |
LING C Y, LI X L, ZHANG Y X, 2021. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone[J]. Environmental Science, 42(8): 3971-3984. | |
[20] | 刘文玲, 马育军, 吴艺楠, 等, 2017. 青海湖流域高原鼠兔扰动对不同地表类型土壤水分特征的影响[J]. 中国水土保持科学, 15(2): 62-69. |
LIU W L, MA Y J, WU Y N, et al., 2017. Effects of plateau pika's disturbance on soil moisture characteristics of different land surface types in Qinghai Lake watershed[J]. Science of Soil and Water Conservation, 15(2): 62-69. | |
[21] | 刘银银, 李峰, 孙庆业, 等, 2013. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 19(3): 547-552. |
LIU Y Y, LI F, SUN Q Y, et al., 2013. Review on the study of soil microorganisms in wetland ecosystems[J]. Chinese Journal of Applied and Environmental Biology, 19(3): 547-552. | |
[22] | 刘永万, 白炜, 尹鹏松, 等, 2020. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响[J]. 草地学报, 28(2): 483-491. |
LIU Y W, BAI W, YIN P S, et al., 2020. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River[J]. Acta Agrestia Sinica, 28(2): 483-491. | |
[23] |
聂秀青, 王冬, 周国英, 等, 2021. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 45(9): 996-1005.
DOI |
NIE X Q, WANG D, ZHOU G Y, et al., 2021. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region[J]. Chinese Journal of Plant Ecology, 45(9): 996-1005. | |
[24] | 裴希超, 许艳丽, 魏巍, 2009. 湿地生态系统土壤微生物研究进展[J]. 湿地科学, 7(2): 181-186. |
PEI X C, XU Y L, WEI W, 2009. A Review on Soil Microorganisms in Wetland Ecosystem[J]. Wetland Science, 7(2): 181-186. | |
[25] | 邵颖, 刘长海, 2017. 土壤微生物与植被、温度及水分关系的研究进展[J]. 延安大学学报 (自然科学版), 36(4): 43-48. |
SHAO Y, LIU C H, 2017. Research progress on the relationship between soil microorganism and vegetation, temperature and moisture[J]. Journal of Yanan University (Natural Science Edition), 36(4): 43-48. | |
[26] | 王记明, 孙苗苗, 陈克龙, 等, 2014. 模拟氮沉降对高寒湿地生境土壤微生物的影响[J]. 青海师范大学学报 (自然科学版), 30(4): 60-64, 69. |
WANG J M, SUN M M, CHEN K L, et al., 2014. Impact of simulated nitrogen deposition on alpine wetland habitats soil microorganism[J]. Journal of Qinghai Normal University (Natural Science Edition), 30(4): 60-64, 69. | |
[27] | 王庆贵, 张晓莹, 2021. 土壤微生物对大气氮沉降的响应研究进展[J]. 河南师范大学学报 (自然科学版), 49(6): 11-18, 69. |
WANG Q G, ZHANG X Y, 2021. Response of soil microorganisms to atmospheric nitrogen deposition: A review[J]. Journal of Henan Normal University (Natural Science Edition), 49(6): 11-18, 69. | |
[28] | 王天慈, 卢丽华, 刘国祥, 等, 2020. 青海湖湖滨湿地演变与驱动因素分析[J]. 中国水利水电科学研究院学报, 18(4): 274-283. |
WANG T C, LU L H, LIU G X, et al., 2020. Analysis of lakeside wetland evolution and driving factors around Qinghai Lake[J]. Journal of China Institute of Water Resources and Hydropower Research, 18(4): 274-283. | |
[29] | 吴松芹, 汪成忠, 李梦莎, 2017. 模拟氮沉降对滨海湿地土壤微生物功能多样性的影响[J]. 土壤, 49(6): 1153-1158. |
WU S Q, WANG C Z, LI M S, 2017. On soil functional diversity of native coastal wetland under simulated nitrogen deposition[J]. Soils, 49(6): 1153-1158. | |
[30] | 徐润宏, 谭梅, 朱锦福, 等, 2021. 高寒湿地土壤微生物多样性对氮沉降浓度差异的响应[J]. 生物学杂志, 38(6): 75-81. |
XU R H, TAN M, ZHU J F, et al., 2021. The response of soil microbial diversity to the difference of N deposition concentration in alpine wetland[J]. Journal of Biology, 38(6): 75-81. | |
[31] | 闫钟清, 齐玉春, 李素俭, 等, 2017. 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展[J]. 微生物学通报, 44(6): 1481-1490. |
YAN Z Q, QI Y C, LI S J, et al., 2017. Soil microorganisms and enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition: A review[J]. Microbiology China, 44(6): 1481-1490. | |
[32] | 杨山, 李小彬, 王汝振, 等, 2015. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 26(3): 739-746. |
YANG S, LI X B, WANG R Z, et al., 2015. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China[J]. Chinese Journal of Applied Ecology, 26(3): 739-746. | |
[33] | 杨阳, 李海亮, 虞凡枫, 等, 2022. 氮沉降对土壤微生物影响研究热点与趋势分析--基于Citespace可视化分析[J]. 土壤通报, 53(1): 116-126. |
YANG Y, LI H L, YU F F, et al., 2022. Research hotspots and trends of the effects of nitrogen deposition on soil microorganisms: Based on Citespace visual analysis[J]. Chinese Journal of Soil Science, 53(1): 116-126. | |
[34] |
杨阳, 肖元明, 李长斌, 等, 2021. 长期氮添加和降水格局改变对高寒草原CH4通量的影响[J]. 应用与环境生物学报, DOI: 10.19675/j.cnki.1006-687x.2021.07052.
DOI |
YANG Y, XIAO Y M, LI C B, et al., 2021. Effects of long-term nitrogen addition and precipitation changes on CH4 flux in an alpine steppe[J]. Chinese Journal of Applied and Environmental Biology, DOI: 10.19675/j.cnki.1006-687x.2021.07052.
DOI URL |
|
[35] | 杨阳, 章妮, 蒋莉莉, 等, 2021. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 29(5): 1043-1052. |
YANG Y, ZHANG N, JIANG L L, et al., 2021. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on The tibetan Plateau[J]. Acta Agrestia Sinica, 29(5): 1043-1052. | |
[36] | 杨英, 耿玉清, 黄桂林, 等, 2016. 青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J]. 湿地科学, 14(1): 20-26. |
YANG Y, GENG Y Q, HUANG G L, et al., 2016. Soil enzyme activities in marshy meadow, meadow and sands in small mooring lake, Qinghai[J]. Wetland Science, 14(1): 20-26. | |
[37] | 叶彦辉, 刘云龙, 韩艳英, 等, 2017. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 25(5): 973-981. |
YE Y H, LIU Y L, HAN Y Y, et al., 2017. Short-term effects of nitrogen deposition on soil physical and chemical properties of alpine shrub meadow in Tibet[J]. Acta Agrestia Sinica, 25(5): 973-981. | |
[38] | 张海芳, 刘红梅, 赵建宁, 等, 2018. 模拟氮沉降和降雨变化对贝加尔针茅草原土壤细菌群落结构的影响[J]. 生态学报, 38(1): 244-253. |
ZHANG H F, LIU H M, ZHAO J N, et al., 2018. Effects of simulated nitrogen deposition and precipitation change on soil bacterial community structure in a Stipa baicalensis steppe[J]. Acta Ecologica Sinica, 38(1): 244-253. | |
[39] | 张静, 董世魁, 赵珍珍, 等, 2019. 模拟氮沉降对青海湖流域高寒草原植物群落组成及稳定性的影响[J]. 草业科学, 36(11): 2733-2741. |
ZHANG J, DONG S K, ZHAO Z Z, et al., 2019. Effect of simulated nitrogen deposition on the community composition and stability of alpine grasslands in the Qinghai Lake Area[J]. Pratacultural Science, 36(11): 2733-2741. | |
[40] | 张明, 欧阳琰, 2017. 基于遥感数据的青海湖流域生物多样性评价研究[J]. 环境与可持续发展, 42(2): 148-150. |
ZHANG M, OUYANG Y, 2017. Indicator system and assessment of biodiversity in Qinghai-Lake area based on remote sensing[J]. Environment and Sustainable Development, 42(2): 148-150. | |
[41] | 张世虎, 张悦, 马晓玉, 等, 2022. 大气氮沉降影响草地植物物种多样性机制的研究[J]. 生态学报, 42(4): 1252-1261. |
ZHANG S H, ZHANG Y, MA X Y, et al., 2022. Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands[J]. Acta Ecologica Sinica, 42(4): 1252-1261. | |
[42] |
张中华, 周华坤, 赵新全, 等, 2018. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 26(2): 111-129.
DOI |
ZHANG Z H, ZHOU H K, ZHAO X Q, 2018. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau[J]. Biodiversity Science, 26(2): 111-129. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[3] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[4] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[5] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[6] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[7] | YOU Haizhou, WANG Chao, ZHAO Guangzhi, LI Dongmei. Distribution Characteristics of Populus euramericana Nocturnal Sap Flow and Its Response to Environmental Factors in North China Plain [J]. Ecology and Environment, 2023, 32(2): 256-263. |
[8] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[9] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[10] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[11] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[12] | ZHANG Lin, ZHOU Piao, QI Shi, ZHANG Dai, WU Bingchen, CUI Ranran. Difference Influence of Spatial Structure of Platycladus orientalis Plantations on Diversity of Understory Herbaceous and Its Correlation Degree [J]. Ecology and Environment, 2022, 31(9): 1794-1801. |
[13] | WANG Zhe, TIAN Shengni, ZHANG Yongmei, ZHANG Heyu, ZHOU Zhongze. Study on the Plant Community Characteristics of the Estuary of Pai River in Chaohu Lake [J]. Ecology and Environment, 2022, 31(9): 1823-1831. |
[14] | CHEN Le, WEI Wei. Spatiotemporal Changes in Land Use and Habitat Quality in A Typical Dryland Watershed of Northwest China [J]. Ecology and Environment, 2022, 31(9): 1909-1918. |
[15] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn