Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 740-749.DOI: 10.16258/j.cnki.1674-5906.2022.04.012
• Research Articles • Previous Articles Next Articles
YI Jiahui1,2(), HE Chao3, YANG Lu1,2, YE Zhixiang1,2, TIAN Ya1,2, KE Biqin1,2, MU Hang1,2, TU Peiyue4, HAN Chaoran1,2, HONG Song1,2,*(
)
Received:
2021-11-29
Online:
2022-04-18
Published:
2022-06-22
Contact:
HONG Song
易嘉慧1,2(), 何超3, 杨璐1,2, 叶志祥1,2, 田雅1,2, 柯碧钦1,2, 慕航1,2, 涂佩玥4, 韩超然1,2, 洪松1,2,*(
)
通讯作者:
洪松
作者简介:
易嘉慧(1999年生),女,硕士研究生,研究方向为环境地学。E-mail: 2020202050003@whu.edu.cn
基金资助:
CLC Number:
YI Jiahui, HE Chao, YANG Lu, YE Zhixiang, TIAN Ya, KE Biqin, MU Hang, TU Peiyue, HAN Chaoran, HONG Song. Spatial Correlation between Changes in Global Temperature and Major Air Pollutants during the COVID-19 Pandemic[J]. Ecology and Environment, 2022, 31(4): 740-749.
易嘉慧, 何超, 杨璐, 叶志祥, 田雅, 柯碧钦, 慕航, 涂佩玥, 韩超然, 洪松. COVID-19疫情期间全球气温和主要大气污染物浓度变化的空间关联[J]. 生态环境学报, 2022, 31(4): 740-749.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.012
时间 | Q1 | Q2 | |||
---|---|---|---|---|---|
平均气温 Average temperature | 2020年相对 变化值 Relative change in 2020 | 平均气温 Average temperature | 2020年相对 变化值 Relative change in 2020 | ||
2020 | 8.56 | — | 0.13 | — | |
2019 | 8.56 | -0.00 | -0.86 | 0.99 | |
2015‒2019 | 8.32 | 0.24 | -0.54 | 0.67 |
Table 1 Global average temperature and its changes during Q1 and Q2 from 2015 to 2020 ℃
时间 | Q1 | Q2 | |||
---|---|---|---|---|---|
平均气温 Average temperature | 2020年相对 变化值 Relative change in 2020 | 平均气温 Average temperature | 2020年相对 变化值 Relative change in 2020 | ||
2020 | 8.56 | — | 0.13 | — | |
2019 | 8.56 | -0.00 | -0.86 | 0.99 | |
2015‒2019 | 8.32 | 0.24 | -0.54 | 0.67 |
PM2.5 | NO2 | O3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | 质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | 质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | ||||
Q1 | 2020 | 47.82 | 7.78 | 26.44 | ||||||||
2019 | 53.75 | -5.93 | -11.04 | 9.98 | -2.20 | -22.05 | 25.27 | 1.18 | 4.65 | |||
2015‒2019 | 57.21 | -9.39 | -16.41 | 11.07 | -3.29 | -29.73 | 24.51 | 1.94 | 7.92 | |||
Q2 | 2020 | 57.45 | 11.53 | 17.51 | ||||||||
2019 | 64.22 | -6.77 | -10.54 | 13.51 | -1.97 | -14.62 | 16.91 | 0.62 | 3.56 | |||
2015‒2019 | 65.63 | -8.18 | -12.47 | 14.00 | -2.46 | -17.60 | 16.84 | 0.67 | 3.98 |
Table 2 Concentration changes of pollutants (PM2.5, NO2 and O3) during Q1and Q3 period from 2015 to 2020 μg∙m-3
PM2.5 | NO2 | O3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | 质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | 质量浓度 Mass concentration | 2020年相对 变化值 Relative change in 2020 | 2020年相对变化率 Relative rate of change in 2020/% | ||||
Q1 | 2020 | 47.82 | 7.78 | 26.44 | ||||||||
2019 | 53.75 | -5.93 | -11.04 | 9.98 | -2.20 | -22.05 | 25.27 | 1.18 | 4.65 | |||
2015‒2019 | 57.21 | -9.39 | -16.41 | 11.07 | -3.29 | -29.73 | 24.51 | 1.94 | 7.92 | |||
Q2 | 2020 | 57.45 | 11.53 | 17.51 | ||||||||
2019 | 64.22 | -6.77 | -10.54 | 13.51 | -1.97 | -14.62 | 16.91 | 0.62 | 3.56 | |||
2015‒2019 | 65.63 | -8.18 | -12.47 | 14.00 | -2.46 | -17.60 | 16.84 | 0.67 | 3.98 |
Figure 3 Changes of global atmospheric pollutant (PM2.5, NO2 and O3) concentration in Q1 of 2020 (a), (c) and (e) represents the global concentrations change of PM2.5, NO2 and O3 in respectively, in Q1 period from 2015 to 2020 (The black dots highlight the actual observation, while the red dots within 2020 indicate the linear extrapolation of pollutant concentration during Q1 period from 2015 to 2019. Here the error bar represents the range of average concentrations at different sites) (b), (d) and (f) represents that spatial and temporal distribution of global PM2.5, NO2 and O3 concentrations respectively, in Q1 during 2020, which is compared with 2015-2019.
Figure 4 Spatial correlations between global temperature changes and concentration changes of various pollutants The regional map shows the spatial distribution of different pollutants in each region. PM2.5, NO2 and O3 ranks from left to right. The bar chart here displays bivarate Moran's I values of different pollutants and air temperature. The gray bar chart indicates that the statistical values are insignificant at P=0.05, while the blue or orange bar chart indicates that the statistical values are significant at P=0.05.
[1] |
ANSELIN L, 1995. Local indicators of spatial association-LISA[J]. Geographical Analysis, 27(2): 93-115.
DOI URL |
[2] |
CONLEY A J, WESTERVELT D M, LAMARQUE J F, et al., 2018. Multimodel surface temperature responses to removal of US Sulfur dioxide emissions[J]. Journal of Geophysical Research-Atmospheres, 123(5): 2773-2796.
DOI URL |
[3] | FORSTER P M, FORSTER H I, EVANS M J, et al., 2020. Current and future global climate impacts resulting from COVID-19[J]. Nature Climate Change, 10(10): 971. |
[4] |
FUENTES R, GALEOTTI M, LANZA A, et al., 2020. COVID-19 and climate change: A tale of two global problems[J]. Sustainability, 12(20): 1-14.
DOI URL |
[5] | GETTELMAN A, LAMBOLL R, BARDEEN C G, et al., 2021. Climate impacts of COVID-19 induced emission changes[J]. Geophysical Research Letters, 48(3): 1-10. |
[6] |
GIRACH I A, OJHA N, BABU S S, 2021. Ozone chemistry and dynamics at a tropical coastal site impacted by the COVID-19 lockdown[J]. Journal of Earth System Science, 130(3): 158-165.
DOI URL |
[7] | GUO H, CHENG T H, GU X F, et al., 2017. Assessment of PM2.5 concentrations and exposure throughout China using ground observations[J]. Science of the Total Environment, 601(1): 1024-1030. |
[8] |
HE C, HONG S, ZHANG L, et al., 2021. Global, continental, and national variation in PM2.5, O3, and NO2 concentrations during the early 2020 COVID-19 lockdown[J]. Atmospheric Pollution Research, 12(3): 136-145.
DOI URL |
[9] |
HEYD T, 2021. COVID-19 and climate change in the times of the Anthropocene[J]. Anthropocene Review, 8(1): 21-36.
DOI URL |
[10] | HU M, CHEN Z B, CUI H Y, et al., 2021. Air pollution and critical air pollutant assessment during and after COVID-19 lockdowns: Evidence from pandemic hotspots in China, the Republic of Korea, Japan, and India[J]. Atmospheric Pollution Research, 12(2): 316-329. |
[11] |
HUGHES K A, CONVEY P, 2020. Implications of the COVID-19 pandemic for Antarctica[J]. Antarctic Science, 32(6): 426-439.
DOI URL |
[12] |
KUMARI P, TOSHNIWAL D, 2022. Impact of lockdown measures during COVID-19 on air quality: A case study of India[J]. International Journal of Environmental Health Research, 32(3): 503-510.
DOI URL |
[13] | LI M, ZHANG Q, KUROKAWA J, et al., 2017. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J]. Atmospheric Chemistry and Physics, 17(2): 935-963. |
[14] |
LIU Z, CIAIS P, DENG Z, et al., 2020. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic[J]. Nature Communications, 11(1): 1-12.
DOI URL |
[15] | LU X, ZHANG L, WANG X L, et al., 2020. Rapid increases in warm-season surface Ozone and resulting health impact in China since 2013 [J]. Environmental Science & Technology Letters, 7(4): 240-247. |
[16] |
PELOSI A, TERRIBILE F, D'URSO G, et al., 2020. Comparison of ERA5-Land and UERRA MESCAN-SURFEX reanalysis data with spatially interpolated weather observations for the regional assessment of reference evapotranspiration[J]. Water, 12(6): 1-22.
DOI URL |
[17] |
RUPANI P F, NILASHI M, ABUMALLOH R A, et al., 2020. Coronavirus pandemic (COVID-19) and its natural environmental impacts[J]. International Journal of Environmental Science and Technology, 17(11): 4655-4666.
DOI URL |
[18] | TOBLER W R, 1970. A computer movie simulating urban growth in the Detroit Region[J]. Economic Geography, 2(46): 234-240. |
[19] |
USMAN M, HUSNAIN M, RIAZ A, et al., 2021. Climate change during the COVID-19 outbreak: Scoping future perspectives[J]. Environmental Science and Pollution Research, 28(35): 49302-49313.
DOI URL |
[20] | VENTER Z S, AUNAN K, CHOWDHURY S, et al., 2020. COVID-19 lockdowns cause global air pollution declines[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(32): 18984-18990. |
[21] |
WANG Y, YAN P, JI F, et al., 2021. Unnatural trend of global land long-term surface air temperature change[J]. International Journal of Climatology, 41(4): 2330-2341.
DOI URL |
[22] | WEBER J, SHIN Y M, SYKES J S, et al., 2020. Minimal climate impacts from short-lived climate forcers following emission reductions related to the COVID-19 pandemic[J]. Geophysical Research Letters, 47(20): 1-11. |
[23] |
WOLFF E, 1992. The influence of global and local atmospheric pollution on the chemistry of Antarctic snow and ice[J]. Marine Pollution Bulletin, 25(9-12): 274-280.
DOI URL |
[24] |
ZANG S M, BENJENK I, BREAKEY S, et al., 2021. The intersection of climate change with the era of COVID-19[J]. Public Health Nursing, 38(2): 321-335.
DOI URL |
ZHANG R X, ZHANG Y Z, LIN H P, et al., 2020. NOxemission reduction and recovery during COVID-19 in East China[J]. Atmosphere, 11(4): 1-15. | |
[25] | 韩余, 周国兵, 陈道劲, 等, 2020. 重庆市臭氧污染及其气象因子预报方法对比研究[J]. 气象与环境学报, 36(4): 59-66. |
HAN Y, ZHOU G B, CHEN D J, et al., 2020. Characteristics of ozone pollution and forecasting technique based on meteorological factors in Chongqing[J]. Journal of Meteorology and Environment, 36(4): 59-66. | |
[26] | 黄小刚, 赵景波, 辛未冬, 2021. 基于网格的长三角PM2.5分布影响因素及交互效应[J]. 环境科学, 42(7): 3107-3117. |
HUANG X G, ZHAO J B, XIN W D, 2021. Factors and their interaction effects on the distribution of PM2.5 in the Yangtze River Delta based on grids[J]. Environmental Science, 42(7): 3107-3117. | |
[27] | 姬杨蓓蓓, 莫世杰, 成枫, 2020. 公共交通管控对新冠肺炎病毒 (COVID-19)疫情爆发期的影响分析[J]. 重庆交通大学学报 (自然科学版), 39(8): 20-28. |
JIYANG B B, MO S J, CHENG F, 2020. Influence analysis of public transport controls against Novel Coronavirus Pneumonia (COVID-19) during outbreak period[J]. Journal of Chongqing Jiaotong University (Natural Science), 39(8): 20-28. | |
[28] | 纪源, 赵秋月, 陈凤, 等, 2021. 新冠肺炎疫情期间南京市PM2.5中碳质组分污染特征分析[J]. 生态与农村环境学报, 37(8): 992-1000. |
JI Y, ZHAO Q Y, CHEN F, et al., 2021. Characteristics of carbonaceous aerosols in ambient PM2.5 during the COVID-19 period in Nanjing[J]. Journal of Ecology and Rural Environment, 37(8): 992-1000. | |
[29] | 李婷慧, 蔡晓斌, 董佳丹, 等, 2020. COVID-19疫情不同阶段管控措施对大气污染物浓度的影响研究[J]. 华中师范大学学报(自然科学版), 54(6): 1051-1058. |
LI T H, CAI X B, DONG J D, et al., 2020. The impact of COVID-19 control measures on atmospheric pollutant concentrations in different epidemic areas of China[J]. Journal of Central China Normal University (Natural Sciences), 54(6): 1051-1058. | |
[30] | 吕桅桅, 李兰, 2018. 湖北省主要观测站PM2.5污染特征及气象要素的影响分析[J]. 生态环境学报, 27(11): 2073-2080. |
LÜ Z Z, LI L, 2018. PM2.5 pollution characteristics in main observation stations in Hubei and the impact analysis of meteorological factors[J]. Ecology and Environmental Sciences, 27(11): 2073-2080. | |
[31] | 毛显强, 曾桉, 邢有凯, 等, 2021. 从理念到行动: 温室气体与局地污染物减排的协同效益与协同控制研究综述[J]. 气候变化研究进展, 17(3): 255-267. |
MAO X Q, ZENG A, XING Y K, et al., 2021. From concept to action: A review of research on co-benefits and co-control of greenhouse gases and local air pollutants reductions[J]. Climate Change Research, 17(3): 255-267. | |
[32] | 缪明榕, 吴辉, 朱毅, 等, 2020. 南通市大气污染物浓度变化特征及其与气象因素的关系[J]. 科学技术与工程, 20(22): 9248-9254. |
MIAO M R, WU H, ZHU Y, et al., 2020. Variation characteristics of atmospheric pollutants’ concentration and its relations with meteorological factors in Nantong City[J]. Science Technology and Engineering, 20(22): 9248-9254. | |
[33] | 倪超, 李新江, 向涛, 等, 2018. 重庆涪陵大气污染物特征及其与气象要素的关系[J]. 西南师范大学学报(自然科学版), 43(9): 123-130. |
NI C, LI X J, XIANG T, et al., 2018. Correlation analysis of atmospheric pollutants and meteorological factors in fulling area of Chongqing[J]. Journal of Southwest China Normal University (Natural Science Edition), 43(9): 23-130. | |
[34] |
沈中健, 曾坚, 2021. 闽南三市城镇发展与地表温度的空间关系[J]. 地理学报, 76(3): 566-583.
DOI |
SHEN Z J, ZENG J, 2021. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian[J]. Acta Geographica Sinica, 76(3): 566-583. | |
[35] | 谢祖欣, 冯宏芳, 林文, 等, 2020. 气象条件对福州市夏季臭氧O3浓度的影响研究[J]. 生态环境学报, 29(11): 2251-2261. |
XIE Z X, FENG H F, LIN W, et al., 2020. Meteorological factors impact on summertime ozone O3 concentration in Fuzhou[J]. Ecology and Environmental Sciences, 29(11): 2251-2261. | |
[36] |
徐冬, 黄震方, 黄睿, 2019. 基于空间面板计量模型的雾霾对中国城市旅游流影响的空间效应[J]. 地理学报, 74(4): 814-830.
DOI |
XU D, HUANG Z F, HUANG R, 2019. The spatial effects of haze on tourism flows of Chinese cities: Empirical research based on the spatial panel econometric model[J]. Acta Geographica Sinica, 74(4): 814-830. | |
[37] | 臧星华, 鲁垠涛, 姚宏, 等, 2015. 中国主要大气污染物的时空分布特征研究[J]. 生态环境学报, 24(8): 1322-1329. |
ZANG X H, LU Y T, YAO H, et al., 2015. The temporal and spatial distribution characteristics of main air pollutants in China[J]. Ecology and Environmental Sciences, 24(8): 1322-1329. | |
[38] | 赵宗慈, 罗勇, 黄建斌, 2021. 气象、环境与新冠肺炎有关系吗?[J]. 气候变化研究进展, 17(3): 377-378. |
ZHAO Z C, LUO Y, HUANG J B, 2021. Are there relationships between meteorology, environment and COVID-19?[J]. Climate Change Research, 17(03): 377-378. | |
[39] | 朱松丽, 2020. “后疫情”时期的全球气候治理[J]. 气候变化研究进展, 16(6): 758-762. |
ZHU S L, 2020. Global climate governance in Post-Pandemic time[J]. Climate Change Research, 16(6): 758-762. |
[1] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[2] | CAI Guojun, YUAN Guixiang, FU Hui. Status and Trends on Ecological Networks Research: A Review Based on Bibliometric Analysis [J]. Ecology and Environment, 2022, 31(8): 1690-1699. |
[3] | LI Meijiao, HE Fanneng, ZHAO Caishan, YANG Fan. Credibility Assessment of Cropland Data in Xinjiang Area in Global Historical LUCC Datasets [J]. Ecology and Environment, 2022, 31(6): 1215-1224. |
[4] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[5] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[6] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[7] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[8] | CHEN Si, WANG Can, LI Xiang, Li Mingrui, ZHAN Fangdong, LI Yuan, ZU Yanquan, HE Yongmei. Effects of Different UV-B Radiation Levels on Soil Enzyme Activities, Active Organic Carbon Content and Greenhouse Gas Emissions in Paddy Fields [J]. Ecology and Environment, 2021, 30(6): 1260-1268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn