Ecology and Environment ›› 2022, Vol. 31 ›› Issue (3): 565-571.DOI: 10.16258/j.cnki.1674-5906.2022.03.015
• Research Articles • Previous Articles Next Articles
ZENG Min1(), CHEN Jia1, LI Exian1, YIN Fuyou1, WANG Linxian1, ZENG Liqiong1, GUO Rong2,*(
)
Received:
2021-03-17
Online:
2022-03-18
Published:
2022-05-25
Contact:
GUO Rong
曾民1(), 陈佳1, 李娥贤1, 殷富有1, 王玲仙1, 曾黎琼1, 郭蓉2,*(
)
通讯作者:
郭蓉
作者简介:
曾民(1980年生),男,助理研究员,博士,主要研究方向为土壤重金属污染修复。E-mail: 1833642906@qq.com
基金资助:
CLC Number:
ZENG Min, CHEN Jia, LI Exian, YIN Fuyou, WANG Linxian, ZENG Liqiong, GUO Rong. Distribution Characteristics and Dynamic Changes of Cadmium Content in the Introgression Lines of Yuanjiang Common Wild Rice[J]. Ecology and Environment, 2022, 31(3): 565-571.
曾民, 陈佳, 李娥贤, 殷富有, 王玲仙, 曾黎琼, 郭蓉. 元江普通野生稻后代镉分布特点及镉积累动态变化规律[J]. 生态环境学报, 2022, 31(3): 565-571.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.03.015
材料 strains | w/(mg∙kg-1) | Cd积累量 Cd accumulation/(µg∙kg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 单株总量 Whole plant | ||
GJ11 | 0.56±0.18a | 0.87±0.07a | 1.41±0.05b | 1.55±0.05b | 24.2±1.45a | 13.8ab | 5.17b | 73.95c | 50.56a | 124.64a | 268.01a | |
GJ110 | 0.68±0.16a | 0.82±0.04a | 1.36±0.04b | 1.34±0.04c | 22.4±1b | 18.94a | 5.97a | 77.73c | 34.65d | 117.73a | 255.09a | |
GJ71 | 0.2±0.02b | 0.39±0.04c | 1.35±0.03b | 1.12±0.1d | 13.5±0.76d | 0.47e | 1.73e | 8.84d | 12.19e | 69.79c | 93.15d | |
GJ91 | 0.03±0.02b | 0.62±0.02b | 1.77±0.09a | 1.75±0.05a | 14.13±0.58d | 6.03d | 5.25b | 99.27a | 44.79b | 79.53c | 235b | |
GJ38 (CK) | 0.42±0.04a | 0.55±0.05b | 1.36±0.15b | 1.84±0.11a | 13.43±0.93d | 12.19b | 4.00d | 71.39c | 31.68d | 73.04c | 192.18c | |
GJ114 (CK) | 0.55±0.03a | 0.6±0.04b | 1.55±0.07b | 1.08±0.04d | 19.33±0.81c | 17.43ab | 4.75b | 87.17b | 39.09c | 97.05b | 245.51b |
Table 1 The Cd content in different organs of six strains during maturing stage
材料 strains | w/(mg∙kg-1) | Cd积累量 Cd accumulation/(µg∙kg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 单株总量 Whole plant | ||
GJ11 | 0.56±0.18a | 0.87±0.07a | 1.41±0.05b | 1.55±0.05b | 24.2±1.45a | 13.8ab | 5.17b | 73.95c | 50.56a | 124.64a | 268.01a | |
GJ110 | 0.68±0.16a | 0.82±0.04a | 1.36±0.04b | 1.34±0.04c | 22.4±1b | 18.94a | 5.97a | 77.73c | 34.65d | 117.73a | 255.09a | |
GJ71 | 0.2±0.02b | 0.39±0.04c | 1.35±0.03b | 1.12±0.1d | 13.5±0.76d | 0.47e | 1.73e | 8.84d | 12.19e | 69.79c | 93.15d | |
GJ91 | 0.03±0.02b | 0.62±0.02b | 1.77±0.09a | 1.75±0.05a | 14.13±0.58d | 6.03d | 5.25b | 99.27a | 44.79b | 79.53c | 235b | |
GJ38 (CK) | 0.42±0.04a | 0.55±0.05b | 1.36±0.15b | 1.84±0.11a | 13.43±0.93d | 12.19b | 4.00d | 71.39c | 31.68d | 73.04c | 192.18c | |
GJ114 (CK) | 0.55±0.03a | 0.6±0.04b | 1.55±0.07b | 1.08±0.04d | 19.33±0.81c | 17.43ab | 4.75b | 87.17b | 39.09c | 97.05b | 245.51b |
材料 Strains | 部位 Organ | 分蘖期亚细胞组分Cd质量分数(mg∙kg-1)及分配比率% Subcelluar disreibution of Cd content and allocation ratio in tillering stage | 灌浆期亚细胞组分Cd质量分数/(mg∙kg-1)及分配比率/% Subcelluar disreibution of Cd content and allocation ratio in filling stage | |||||
---|---|---|---|---|---|---|---|---|
细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | 细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | |||
GJ11 | 根 | 4.56±0.46a (55.61%) | 1.48±0.1ab (18.05%) | 2.16±0.08b (26.34%) | 7.23±0.19b (54.3%) | 2.42±0.2b (18.17%) | 3.67±0.24a (27.55%) | |
GJ110 | 4.83±0.02a (54.88%) | 1.61±0.1a (18.3%) | 2.36±0.19a (26.82%) | 8.52±0.21a (56.95%) | 3.27±0.14a (21.86%) | 3.17±0.16b (21.19%) | ||
GJ71 | 3.28±0.27b (56%) | 1.05±0.06c (17.9%) | 1.53±0.03c (26.1%) | 4.84±0.2d (55%) | 1.85±0.09d (21.02%) | 2.11±0.11c (23.98%) | ||
GJ91 | 3.66±0.2b (56.83%) | 1.15±0.83c (17.86%) | 1.63±0.05c (25.31%) | 5.04±0.17d (54.14%) | 1.95±0.1cd (20.95%) | 2.32±0.25c (24.92%) | ||
GJ38 | 4.32±0.38a (54.75%) | 1.44±0.07b (18.25%) | 2.13±0.06b (27%) | 5.05±0.1d (54.36%) | 2.04±0.17cd (21.96%) | 2.2±0.12c (23.68%) | ||
GJ114 | 4.57±0.24a (55.46%) | 1.49±0.1ab (18.08%) | 2.18±0.03b (26.46%) | 6.72±0.21c (53.67%) | 2.18±0.16bc (17.41%) | 3.62±0.21a (26.04%) | ||
GJ11 | 茎 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.67±0.03ab (48.55%) | 0.33±0.04a (23.91%) | 0.38±0.03a (27.54%) | |
GJ110 | 0.25±0.03ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.59±0.04c (47.2%) | 0.31±0.03ab (24.8%) | 0.35±0.04a (28%) | ||
GJ71 | 0.26±0.02a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.71±0.06a (53.38%) | 0.33±0.03a (24.81%) | 0.29±0.03d (21.81%) | ||
GJ91 | 0.26±0.01a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.42±0.02d (52.38%) | 0.2±0.02c (23.81%) | 0.22±0.02c (26.19%) | ||
GJ38 | 0.22±0.02b (41.51%) | 0.14±0.01a (26.42%) | 0.17±0.01a (32.08%) | 0.58±0.06c (48.74%) | 0.28±0.03b (23.53%) | 0.33±0.02ab (27.73%) | ||
GJ114 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.63±0.04bc (49.22%) | 0.3±0.02ab (23.44%) | 0.35±0.05a (27.34%) | ||
GJ11 | 叶 | 0.15±0.04bc (39.47%) | 0.11±0.01a (28.95%) | 0.12±0.01b (31.58%) | 0.71±0.03bc (55.04%) | 0.16±0.01b (12.4%) | 0.42±0.04ab (32.56%) | |
GJ110 | 0.15±0.01 bc (40.54%) | 0.1±0.01a (27.03%) | 0.12±0.01b (32.43%) | 0.65±0.09cd (51.18%) | 0.21±0.01a (16.54%) | 0.41±0.07ab (32.28%) | ||
GJ71 | 0.14±0.02c (40%) | 0.09±0.01b (25.71%) | 0.12±0.01b (34.29%) | 0.57±0.06de (58.75%) | 0.10±0.01d (10.31%) | 0.30±0.06ab (30.93%) | ||
GJ91 | 0.18±0.03bc (47.37%) | 0.07±0.01c (18.42%) | 0.13±0.03a (34.21%) | 0.52±0.03e (59.77%) | 0.11±0.01d (12.64%) | 0.24±0.07b (27.58%) | ||
GJ38 | 0.2±0.01a (44.44%) | 0.12±0.02a (26.67%) | 0.13±0.01a (28.89%) | 0.93±0.08a (60.39%) | 0.14±0.01c (9.1%) | 0.47±0.08a (35.07%) | ||
GJ114 | 0.19±0.03ab (43.18%) | 0.11±0.01a( 25%) | 0.14±0.01a (31.82%) | 0.76±0.04b (56.72%) | 0.14±0.01c (10.45%) | 0.44±0.04a (32.84%) |
Table 2 Subcelluar disreibution of Cd content in introgression lines rice at different stage
材料 Strains | 部位 Organ | 分蘖期亚细胞组分Cd质量分数(mg∙kg-1)及分配比率% Subcelluar disreibution of Cd content and allocation ratio in tillering stage | 灌浆期亚细胞组分Cd质量分数/(mg∙kg-1)及分配比率/% Subcelluar disreibution of Cd content and allocation ratio in filling stage | |||||
---|---|---|---|---|---|---|---|---|
细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | 细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | |||
GJ11 | 根 | 4.56±0.46a (55.61%) | 1.48±0.1ab (18.05%) | 2.16±0.08b (26.34%) | 7.23±0.19b (54.3%) | 2.42±0.2b (18.17%) | 3.67±0.24a (27.55%) | |
GJ110 | 4.83±0.02a (54.88%) | 1.61±0.1a (18.3%) | 2.36±0.19a (26.82%) | 8.52±0.21a (56.95%) | 3.27±0.14a (21.86%) | 3.17±0.16b (21.19%) | ||
GJ71 | 3.28±0.27b (56%) | 1.05±0.06c (17.9%) | 1.53±0.03c (26.1%) | 4.84±0.2d (55%) | 1.85±0.09d (21.02%) | 2.11±0.11c (23.98%) | ||
GJ91 | 3.66±0.2b (56.83%) | 1.15±0.83c (17.86%) | 1.63±0.05c (25.31%) | 5.04±0.17d (54.14%) | 1.95±0.1cd (20.95%) | 2.32±0.25c (24.92%) | ||
GJ38 | 4.32±0.38a (54.75%) | 1.44±0.07b (18.25%) | 2.13±0.06b (27%) | 5.05±0.1d (54.36%) | 2.04±0.17cd (21.96%) | 2.2±0.12c (23.68%) | ||
GJ114 | 4.57±0.24a (55.46%) | 1.49±0.1ab (18.08%) | 2.18±0.03b (26.46%) | 6.72±0.21c (53.67%) | 2.18±0.16bc (17.41%) | 3.62±0.21a (26.04%) | ||
GJ11 | 茎 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.67±0.03ab (48.55%) | 0.33±0.04a (23.91%) | 0.38±0.03a (27.54%) | |
GJ110 | 0.25±0.03ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.59±0.04c (47.2%) | 0.31±0.03ab (24.8%) | 0.35±0.04a (28%) | ||
GJ71 | 0.26±0.02a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.71±0.06a (53.38%) | 0.33±0.03a (24.81%) | 0.29±0.03d (21.81%) | ||
GJ91 | 0.26±0.01a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.42±0.02d (52.38%) | 0.2±0.02c (23.81%) | 0.22±0.02c (26.19%) | ||
GJ38 | 0.22±0.02b (41.51%) | 0.14±0.01a (26.42%) | 0.17±0.01a (32.08%) | 0.58±0.06c (48.74%) | 0.28±0.03b (23.53%) | 0.33±0.02ab (27.73%) | ||
GJ114 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.63±0.04bc (49.22%) | 0.3±0.02ab (23.44%) | 0.35±0.05a (27.34%) | ||
GJ11 | 叶 | 0.15±0.04bc (39.47%) | 0.11±0.01a (28.95%) | 0.12±0.01b (31.58%) | 0.71±0.03bc (55.04%) | 0.16±0.01b (12.4%) | 0.42±0.04ab (32.56%) | |
GJ110 | 0.15±0.01 bc (40.54%) | 0.1±0.01a (27.03%) | 0.12±0.01b (32.43%) | 0.65±0.09cd (51.18%) | 0.21±0.01a (16.54%) | 0.41±0.07ab (32.28%) | ||
GJ71 | 0.14±0.02c (40%) | 0.09±0.01b (25.71%) | 0.12±0.01b (34.29%) | 0.57±0.06de (58.75%) | 0.10±0.01d (10.31%) | 0.30±0.06ab (30.93%) | ||
GJ91 | 0.18±0.03bc (47.37%) | 0.07±0.01c (18.42%) | 0.13±0.03a (34.21%) | 0.52±0.03e (59.77%) | 0.11±0.01d (12.64%) | 0.24±0.07b (27.58%) | ||
GJ38 | 0.2±0.01a (44.44%) | 0.12±0.02a (26.67%) | 0.13±0.01a (28.89%) | 0.93±0.08a (60.39%) | 0.14±0.01c (9.1%) | 0.47±0.08a (35.07%) | ||
GJ114 | 0.19±0.03ab (43.18%) | 0.11±0.01a( 25%) | 0.14±0.01a (31.82%) | 0.76±0.04b (56.72%) | 0.14±0.01c (10.45%) | 0.44±0.04a (32.84%) |
[1] | SIEBERS N, SIANGLIW M, TONGCUMPOU C, 2013. Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: Soil and hydroponic experiments[J]. Journal of Soil Science & Plant Nutrition, 13(4): 833-844. |
[2] |
SUN L, XU X, JIANG Y, et al., 2016. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontier in Plant Science, DOI: 10.3389/fpls.2016.01407.
DOI |
[3] | TIWARI M, SHARMA D, DWIVEDI S, et al., 2014. Expression in Arabidopsis, and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant Cell & Environment, 37(1): 140-152. |
[4] | UENO D, YAMAJI N, KONO I, et al., 2010. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(38): 16500-16505. |
[5] |
URAGUCHI S, FUJIWARA T, 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 108(52): 20959-20964.
DOI URL |
[6] | WANG J B, SU L Y, YANG J Z, et al., 2015. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress[J]. Plant & Soil, 396(12): 325-337. |
[7] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[8] | 付铄岚, 王昌全, 李冰, 等, 2017. 外源Cd 在不同品种水稻组织中的细胞分布和化学形态特征研究[J]. 中国生态农业学报, 25(6): 903-910. |
FU S L, WANG C Q, LI B, et al., 2017. Histocyte distribution and cadmium forms in different rice cultivar seedlings with exogenous cadmium supply[J]. Chinese Journal of Eco-Agriculture, 25(6): 903-910. | |
[9] | 贺慧, 陈灿, 邓华斌, 等, 2014. 不同基因型水稻镉吸收差异及镉对水稻的影响研究进展[J]. 作物研究, 28(2): 211-215. |
HE H, CHEN C, DENG H B, et al., 2014. Research progress of cadmium absorption of different genotypes of rice and the effect of cadmium on rice[J]. Crop Research, 28(2): 211-215. | |
[10] | 黄兴奇, 陈勇, 戴陆园, 等, 2005. 云南作物种质资源[M]. 昆明: 云南科技出版社. |
HUANG X Q, CHEN Y, DAI L Y, et al., 2005. Crop germplasm resources of Yunnan province[M]. Kunming: Yunnan Science and Technology Press. | |
[11] | 柯学, 陈越, 殷富有, 等, 2018. 普通野生稻在稻属中的分类进化及资源研究[J]. 分子植物育种, 16(4): 1363-1376. |
KE X, CHEN Y, YIN F Y, et al., 2018. Taxonomic evolution and resource research of oryza rufipogon griff. in phylogeny of oryza and its advances[J]. Molecular Plant Breeding, 16(4): 1363-1376. | |
[12] | 李江遐, 张军, 马友华, 等, 2017. 不同水稻品种对镉的吸收转运及其非蛋白巯基含量的变化[J]. 生态环境学报, 26(12): 2140-2145. |
LI J X, ZHANG J, MA Y H, et al., 2017. Uptake and translocation of cadmium and content of non-protein thiols in different rice cultivars[J]. Ecology and Environmental Sciences, 26(12): 2140-2145. | |
[13] | 李坤权, 刘建国, 陆小龙, 等, 2003. 水稻不同品种对镉吸收及分配的差异[J]. 农业环境科学学报, 22(5): 529-532. |
LI K Q, LIU J G, LU X L, et al., 2003. Uptake and distribution of cadmium in different rice cultivars[J]. Journal of Agro-Environment Science, 22(5): 529-532. | |
[14] | 刘仲齐, 张长波, 黄永春, 2019. 水稻各器官镉阻控功能的研究进展[J]. 农业环境科学学报, 38(4): 721-727. |
LIU Z Q, ZHANG C B, HUANG Y C, 2019. Research advance on the functions of rice organs in cadmium inhibition: A review[J]. Journal of Agro-Environment Science, 38(4): 721-727. | |
[15] | 史静, 潘根兴, 2015. 外加镉对水稻镉吸收、亚细胞分布及非蛋白巯基含量的影响[J]. 生态环境学报, 24(5): 853-859. |
SHI J, PAN G X, 2015. Effects of Cd-spiking treatment on Cd accumulation, subcellular distribution and content of nonprotein thiols in rice[J]. Ecology and Environmental Sciences, 24(5): 853-859. | |
[16] | 文典, 江棋, 邓腾灏博, 等, 2021. 土壤调理剂对稻米中镉含量及其品质的影响[J]. 生态环境学报, 30(2): 400-404. |
WEN D, JIANG Q, DENG T H B, et al., 2021. Effects of soil amendment on rice cadmium uptake and quality[J]. Ecology and Environmental Sciences, 30(2): 400-404. | |
[17] | 文典, 江棋, 李蕾, 等, 2020. 重金属污染高风险农用地水稻安全种植技术研究[J]. 生态环境学报, 29(3): 624-628. |
WEN D, JIANG Q, LI L, et al., 2020. Study on safe planting technology of rice in high risk farmland of heavy metal pollution[J]. Ecology and Environmental Sciences, 29(3): 624-628. | |
[18] | 吴文革, 张洪程, 吴桂成, 等, 2007. 超级稻群体籽粒库容特征的初步研究[J]. 中国农业科学, 40(2): 250-257. |
WU W G, ZHANG H C, WU G C, et al., 2007. Preliminary study on super rice population sink characters[J]. Scientia Agricultura Sinica, 40(2): 250-257. | |
[19] | 徐靖, 唐清杰, 韩义胜, 等, 2014. 海南普通野生稻与栽培稻的营养品质比较[J]. 热带农业科学, 34(4): 57-59. |
XU J, TANG Q J, HAN Y S, et al., 2014. Comparison of nutritional quality between Hainan common wild rice (Oryza rufipogon Griff) and cultivated rice[J]. Chinese Journal of Tropical Agriculture, 34(4): 57-59. | |
[20] | 徐玲玲, 陈善娜, 程在全, 等, 2005. 云南野生稻对土壤环境中营养元素的吸收能力初探[J]. 西南农业学报, 18(6): 744-746. |
XU L L, CHEN S N, CHENG Z Q, et al., 2005. Primary study on absorption efficiency of different Yunnan wild rice to nutrient elements[J]. South west China Journal of Agricultural Sciences, 18(6): 744-746. | |
[21] | 严勋, 唐杰, 李冰, 等, 2019. 不同水稻品种对镉积累的差异及其与镉亚细胞分布的关系[J]. 生态毒理学报, 14(5): 244-256. |
YAN X, TANG J, LI B, et al., 2019. Cadmium accumulation in different rice varieties and its relationship with subcellular distribution of cadmium[J]. Asian Journal of Ecotoxicology, 14(5): 244-256. | |
[22] | 杨庆文, 戴陆园, 时津霞, 等, 2004. 云南元江普通野生稻 (Oryza rufipogon Griff) 遗传多样性分析及保护策略研究[J]. 植物遗传资源学报, 5(1): 1-5. |
YANG Q W, DAI L Y, SHI J X, et al., 2004. Study of genetic diversity and conservation strategy of (Oryza rufipogon Griff.) in Yuan jiang[J]. Journal of Plant Genetic Resources, 5(1): 1-5. | |
[23] | 曾民, 郭蓉, 杨树明, 等, 2019. 云南省个旧市农产品产地土壤重金属污染与生态风险评价[J]. 土壤与作物, 8(1): 85-92. |
ZENG M, GUO R, YANG S M, et al., 2019. Heavy metal pollution and ecological risk assessment in agricultural production areas: Taking Gejiu City of Yunnan Province as an example[J]. Soils and Crops, 8(1): 85-92. | |
[24] | 曾民, 曾黎琼, 王玲仙, 等, 2021. 元江普通野生稻渗入系籽粒镉评价及与农艺性状的相关性分析[J]. 农业环境科学学报, 40(8): 1644-1649. |
ZENG M, ZENG L Q, WANG L X, et al., 2021. Cd accumulation in grains of introgression lines of Yuanjiang common wild rice and its correlation with agronomic traits in rice[J]. Journal of Agro-Environment Science, 40(8): 1644-1649. | |
[25] | 甄燕红, 成颜君, 潘根兴, 等, 2008. 中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J]. 安全与环境学报, 8(1): 119-122. |
ZHEN Y H, CHENG Y J, PAN G X, et al., 2008. Cd,Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety[J]. Journal of Safety and Environment, 8(1): 119-122. |
[1] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[2] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[3] | MEI Chuang, CAI Kunzheng, LI Zishan, XU Meili, HUANG Fei. Effects of Rice-straw Biochar on the Transformation of Cadmium Fractions and Microbial Community in Paddy Soils [J]. Ecology and Environment, 2022, 31(2): 380-390. |
[4] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[5] | REN Jun, PAN Jiaxuan, TAO Ling, TONG Yunlong, WANG Ruo’an, SUN Xinni. Stabilization Remediation of Soil Polluted by Cd Using Palygorskite Modified by NaOH [J]. Ecology and Environment, 2022, 31(12): 2422-2430. |
[6] | ZHANG Jinlong, HUANG Ying, WU Lifang, GONG Yunhui, LIU Yungen, WANG Yan, YANG Silin. As Subcellular Distribution and Physiological Response of Typha angustifolia L. to As Exposure [J]. Ecology and Environment, 2021, 30(5): 1042-1050. |
[7] | WANG Yazhuo, ZHOU Xiang, XIU Lei, SHAN Rui, YUAN Haoran. Preparation of K2FeO4 Modified Biochar and Its Adsorption Characteristics for Cd(Ⅱ) in Aqueous Solution [J]. Ecology and Environment, 2021, 30(12): 2380-2386. |
[8] | RU Shuhua, ZHAO Ouya, HOU Limin, XIAO Guangmin, WANG Ce, SUN Shiyou, ZHANG Guoyin, WANG Ling, LIU Lei. Effects of Eight Kinds of Passivators on Properties and Cadmium Availability in Different Cadmium-contaminated Soil [J]. Ecology and Environment, 2021, 30(10): 2085-2092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn