Ecology and Environment ›› 2022, Vol. 31 ›› Issue (11): 2234-2241.DOI: 10.16258/j.cnki.1674-5906.2022.11.015
• Research Articles • Previous Articles Next Articles
ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing*(), XIE Yue
Received:
2022-07-20
Online:
2022-11-18
Published:
2022-12-22
Contact:
YANG Hongxing
通讯作者:
杨洪杏
作者简介:
周椿富(1996年生),男,硕士研究生,主要从事土壤微生物研究。
基金资助:
CLC Number:
ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing, XIE Yue. Effects of Antibiotics on Soil Enzyme Activities in Different Soils[J]. Ecology and Environment, 2022, 31(11): 2234-2241.
周椿富, 于锐, 王翔, 闯绍闯, 杨洪杏, 谢越. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 2022, 31(11): 2234-2241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.11.015
组别 Test group | 供试土壤类型 Test soil | 抗生素 Antibiotic |
---|---|---|
CKAc | 酸性 | 0 |
OTCAc | 酸性 | 20 mg·kg-1 OTC |
ENRAc | 酸性 | 20 mg·kg-1 ENR |
SM2Ac | 酸性 | 150 mg·kg-1 SM2 |
CKNe | 中性 | 0 |
OTCNe | 中性 | 20 mg·kg-1 OTC |
ENRNe | 中性 | 20 mg·kg-1 ENR |
SM2Ne | 中性 | 150 mg·kg-1 SM2 |
CKAl | 碱性 | 0 |
OTCAl | 碱性 | 20 mg·kg-1 OTC |
ENRAl | 碱性 | 20 mg·kg-1 ENR |
SM2Al | 碱性 | 150 mg·kg-1 SM2 |
Table 1 Antibiotic addition under different soil treatments
组别 Test group | 供试土壤类型 Test soil | 抗生素 Antibiotic |
---|---|---|
CKAc | 酸性 | 0 |
OTCAc | 酸性 | 20 mg·kg-1 OTC |
ENRAc | 酸性 | 20 mg·kg-1 ENR |
SM2Ac | 酸性 | 150 mg·kg-1 SM2 |
CKNe | 中性 | 0 |
OTCNe | 中性 | 20 mg·kg-1 OTC |
ENRNe | 中性 | 20 mg·kg-1 ENR |
SM2Ne | 中性 | 150 mg·kg-1 SM2 |
CKAl | 碱性 | 0 |
OTCAl | 碱性 | 20 mg·kg-1 OTC |
ENRAl | 碱性 | 20 mg·kg-1 ENR |
SM2Al | 碱性 | 150 mg·kg-1 SM2 |
Figure 1 Effect of antibiotics on enzyme activity in acid soil CKAc: Acid soil without antibiotics; OTCAc: Acid soil supplemented with oxytetracycline; ENRAc: Acid soil supplemented with enrofloxacin; SM2Ac: Acid soil supplemented with sulfamethazine. Different lowercase letters above the bars indicate the significantly different at 5% level, the same as below
Figure 2 Effect of antibiotics on enzyme activity in neutral soil CKNe: Neutral soil without antibiotics; OTCNe: Neutral soil supplemented with oxytetracycline; ENRNe: Neutral soil supplemented with enrofloxacin; SM2Ne: Neutral soil supplemented with sulfamethazine
Figure 3 Effect of antibiotics on enzyme activity in alkaline soil CKAl: Alkaline soil without antibiotics; OTCAl: Alkaline soil supplemented with oxytetracycline; ENRAl: Alkaline soil supplemented with enrofloxacin; SM2Al: Alkaline soil supplemented with sulfamethazine
[1] |
AMORIM C L, MOREIRA I S, MAIA A S, et al., 2014. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Applied Microbiology and Biotechnology, 98(7): 3181-3190.
DOI URL |
[2] |
BARAN W, ADAMEK E, ZIEMIANSKA J, et al., 2011. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 196: 1-15.
DOI PMID |
[3] |
CHEN J L, MOORHEAD D L, 2021. Progressively decreased nitrogen-stimulation of soil phosphatase activity with long-term nitrogen addition[J]. Applied Soil Ecology, 169: 104213.
DOI URL |
[4] |
DONNELLY K C, CLAXTON L D, HUEBNER H J, et al., 1998. Mutagenic interactions of model chemical mixtures[J]. Chemosphere, 37(7): 1253-1261.
PMID |
[5] |
ENSENBACH U, NAGEL R, 1997. Toxicity of binary chemical mixtures: effects on reproduction of zebrafish (Brachydanio rerio)[J]. Archives of Environmental Contamination and Toxicology, 32(2): 204-210.
PMID |
[6] |
JABBOROVA D, SAYYED R Z, AZIMOV A, et al., 2021. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties[J]. Saudi Journal of Biological Sciences, 28(9): 5268-5274.
DOI PMID |
[7] |
LAHR J, MOREAU C, FABER J H, 2005. Do veterinary pharmaceuticals affect soil functioning at environmentally relevant concentrations?[J]. PloS One, 9(11): e107723.
DOI URL |
[8] |
LIAO X, LI B, ZOU R, et al., 2016. Antibiotic sulfanilamide biodegradation by acclimated microbial populations[J]. Applied microbiology and biotechnology, 100(5): 2439-2447.
DOI PMID |
[9] |
LIU F, YING G G, TAO R, et al., 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 157(5): 1636-1642.
DOI PMID |
[10] |
MA Q Y, LI J W, AAMER M, et al., 2020. Effect of Chinese Milk Vetch (Astragalus sinicus L.) and rice straw incorporated in paddy soil on greenhouse gas emission and soil properties[J]. Agronomy, 10(5): 717.
DOI URL |
[11] |
QIN J M, XIONG H Y, MA H T, et al., 2019. Effects of different fertilizers on residues of oxytetracycline and microbial activity in soil[J]. Environmental Science and Pollution Research, 26(1): 161-170.
DOI URL |
[12] |
QIAN X, GU J, SUN W, et al., 2017. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal of Hazardous Materials, 344: 716-722.
DOI URL |
[13] |
SIWACH A, KAUSHAL S, BAISHYA R, 2021. Terricolous mosses impact soil microbial biomass carbon and enzymatic activity under temperate forest types of the Garhwal Himalayas[J]. Environmental Monitoring and Assessment, 193(8): 516-516.
DOI PMID |
[14] |
TOPAL M, SENEL G U, OEBEK E, et al., 2016. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant[J]. Journal of Environmental Management, 173: 1-9.
DOI PMID |
[15] |
VAN BOECKEL T P, BROWER C, GILBERT M, et al., 2015. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 112(18): 5649-5654.
DOI URL |
[16] |
YANG J F, YING G G, ZHAO J L, et al., 2010. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[J]. Science of the Total Environment, 408(16): 3424-3432.
DOI URL |
[17] | ZHANG Y, SNOW D D, PARKER D, et al., 2013. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science&Technology, 47(18): 10206-10213. |
[18] |
ZHU Y G, JOHNSON T A, SU J Q, et al., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 110(9): 3435-3440.
DOI URL |
[19] | 鲍艳宇, 2008. 四环素类抗生素在土壤中的环境行为及生态毒性研究[D]. 天津: 南开大学: 18-72. |
BAO Y Y, 2008. Environmental behavior and eco-toxicity of tetracycline antibiotics in soils[D]. Tianjin: Nankai University: 18-72. | |
[20] | 陈俊辉, 2010. 抗生素类污染物在土壤含水氧化物中吸附行为的研究[D]. 兰州: 西北师范大学: 6-35. |
CHEN J H, 2010. Study on adsorption of antibiotic contaminants to hydrous oxidexidess in soil matrix[D]. Lanzhou: Northwest Normal University: 6-35. | |
[21] | 陈智学, 2013. 土霉素对酶活性及微生物群落代谢的影响[D]. 咸阳: 西北农林科技大学: 9-27. |
CHEN X Z, 2013. Effects of OTC on enzyme acticities and microbial community metabolic profiles[D]. Xianyang: Northwest A&F University: 9-27. | |
[22] | 程章, 2009. 诺氟沙星对阿部鲻鰕鯱细胞色素P450 1A1和P-gp基因诱导和表达的影响[D]. 广州: 暨南大学: 49-56. |
CHENG Z, 2009. Two biomarker cytochrome P450 1A1 and P-glycoprotein in Mugilogobius abei: cDNA clone expression induced by Norfloxacin[D]. Guangzhou: Jinan University: 49-56. | |
[23] | 杜黎明, 吴昊, 陈彩萍, 2006. 喹诺酮类药物的分析方法与应用[M]. 北京: 科学出版社:8-36. |
DU L M, WU H, CHEN C P, 2006. Analysis method and application of quinolones[M]. Beijing: Science Press:8-36. | |
[24] | 范菲菲, 朱健, 闫献芳, 等, 2013. 兽药土霉素在土壤环境中的行为[J]. 中国兽医杂志, 49(8): 58-59. |
FAN F F, ZHU J, YAN X F, et al., 2013. Behavior of veterinary drug oxytetracycline in soil environment[J]. Chinese Journal of Veterinary Medicine, 49(8): 58-59. | |
[25] | 顾觉奋, 2002. 合理应用青霉素类和头孢菌素类抗生素[J]. 药学与临床研究, 10(3): 49-54. |
GU J F, 2002. Rational application of penicillin and cephalosporin antibiotics[J]. Pharmaceutical and Clinical Research, 10(3): 49-54. | |
[26] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 260-339. |
GUAN S Y, 1986. Soil enzymes and the research methods[M]. Beijing: China Agriculture Press: 260-339. | |
[27] | 金彩霞, 刘军军, 鲍林林, 等, 2010. 磺胺间甲氧嘧啶-镉复合污染对作物种子发芽的影响[J]. 中国环境科学, 30(6): 839-844. |
JIN C X, LIU J J, BAO L L, et al., 2010. Joint toxicity of sulfamonomethoxine and Cd on seed germination and root elongation of crops in soil[J]. China Environmental Science, 30(6): 839-844. | |
[28] | 金兰淑, 申龙, 刘艳茹, 等, 2013. 鸡粪与四环素对土壤脲酶和磷酸酶活性的影响[J]. 农业环境科学学报, 32(5): 986-990. |
JIN L S, SHEN L, LIU Y R, et al., 2013. Effect of chicken manure and tetracycline on soil urease and phosphatase activity[J]. Journal of Agro-Environment Science, 32(5): 986-990. | |
[29] | 刘超, 赵光影, 宋艳宇, 等, 2019. 气候变化背景下湿地土壤酶活性研究进展[J]. 中国农学通报, 35(33): 91-97. |
LIU C, ZHAO G Y, SONG Y Y, et al., 2019. Soil enzyme activity in wetland under the background of climate change: Research progress[J]. Chinese Agricultural Science Bulletin, 35(33): 91-97. | |
[30] | 李凯旋, 2018. 三氯生和克拉霉素复合污染对土壤酶活性及微生物群落结构的影响[D]. 重庆: 重庆大学: 11-35. |
LI K X, 2018. The combined contamination of triclosan and clarithromycin on soil enzyme activities and microbial community structure[D]. Chongqing: Chongqing University: 11-35. | |
[31] | 刘莉莉, 林匡飞, 苏爱华, 等, 2008. 四溴双酚A对土壤酶活性的影响[J]. 环境污染与防治, 30(6): 5. |
LIU L L, LIN K F, SU A H, et al., 2008. Effects of tetrabromobisphenol A on soil enzyme activities[J]. Environmental Pollution & Control, 30(6): 5. | |
[32] | 刘文英, 2003. 药物分析[M]. 北京: 人民卫生出版社: 10-66. |
LIU W Y, 2003. Pharmaceutical analysis[M]. Beijing: People’s Medical Publishing House: 10-66. | |
[33] | 陆琴, 李冬琴, 2020. 土壤酶及其生态指示作用研究进展[J]. 安徽农业科学, 48(18): 14-17. |
LU Q, LI D Q, 2020. Research progress on soil enzymes and their functioning as ecosystem indicators[J]. Journal of Anhui Agricultural Sciences, 48(18): 14-17. | |
[34] | 李鑫, 2015. 四环素类抗生素在不同质地土壤中迁移模拟研究[D]. 阜新: 辽宁工程技术大学: 10-39. |
LI X, 2015. The study on environmental behavior of tetracycline antibiotics in different texture soils[D]. Fuxin: Liaoning Technical University: 10-39. | |
[35] | 毛书帅, 2016. 三种抗生素和铜单一及复合污染对土壤酶和微生物群落功能多样性的影响[D]. 泰安: 山东农业大学: 14-60. |
MAO S S, 2016. Single and joint toxicity of three typical antibiotics and Cu on soil microbial community function diversity and soil enzyme activity[D]. Taian: Shandong Agricultural University: 14-60. | |
[36] | 隋倩雯, 张俊亚, 魏源送, 等, 2015. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 10(5): 20-34. |
SUI Q W, ZHANG J Y, WEI Y S, et al., 2015. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production: An overview[J]. Asian Journal of Ecotoxicology, 10(5): 20-34. | |
[37] | 汪杏, 沈根祥, 胡双庆, 等, 2016. 铬(Ⅵ)和菲单一及复合污染对土壤微生物酶活性的影响[J]. 农业环境科学学报, 35(7): 8. |
WANG X, SHEN G X, HU S Q, et al., 2016. Effects of single and joint pollution of chromium (Ⅵ) and phenanthrene on microbiological enzyme activities in soil[J]. Journal of Agro-Environment Science, 35(7): 8. | |
[38] | 王冉, 刘铁铮, 王恬, 2006. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 26(1): 265-270. |
WANG R, LIU T Z, WANG T, 2006. The fate of antibiotics in environment and its ecotoxicology: A review[J]. Acta Ecologica Sinica, 26(1): 265-270. | |
[39] | 吴杰, 李志琳, 徐佳迎, 等, 2019. 兽用抗生素磺胺二甲嘧啶对稻田N2O排放的影响及其微生物机制[J]. 环境科学, 40(6): 2847-2857. |
WU J, LI Z L, XU J Y, et al., 2019. Effects of the veterinary antibiotic sulfamethazine on N2O emissions and the associated microbiological mechanism in a rice field[J]. Environmental Science, 40(6): 2847-2857. | |
[40] | 魏子艳, 王金花, 夏晓明, 等, 2014. 三种抗生素对蔬菜种子芽与根伸长的生态毒性效应[J]. 农业环境科学学报, 33(2): 237-242. |
WEI Z X, WANG J H, XIA X M, et al., 2014. Ecotoxicity of three antibiotics to shoots and root elongation of cucumber, rape and chinese cabbage[J]. Journal of Agro-Environment Science, 33(2): 237-242. | |
[41] | 徐东峰, 2000. 恩诺沙星的作用机理与妙用[J]. 湖北畜牧兽医 (5): 31-32. |
XU D F, 2000. Action mechanism and wonderful use of enrofloxacin[J]. Hubei Journal of Animal and Veterinary Sciences (5): 31-32. | |
[42] | 杨玖, 2014. 磺胺类抗生素与锌对堆肥过程中酶活性及微生物群落结构多样性的影响[D]. 咸阳: 西北农林科技大学: 28-36. |
YANG J, 2014. Effects of sulfonamides and znic on enzymeactivity and microbial community diversity during composting[D]. Xianyang: Northwest Normal University: 28-36. | |
[43] | 闫赛红, 2015. 恩诺沙星与镉单一及复合污染对土壤微生物群落结构和功能的影响[D]. 泰安: 山东农业大学: 18-66. |
YAN S H, 2015. Single and joint toxicity of enrofloxacin and Cd on soil microbial community structure and function[D]. Taian: Shandong Agricultural University: 18-66. | |
[44] | 张晨, 张丽红, 李亚宁, 等, 2018. 典型磺胺类抗生素对土壤脱氢酶和过氧化氢酶活性的影响[J]. 安全与环境学报, 18(6): 2379-2382. |
ZHANG C, ZHANG L H, LI Y N, et al., 2018. Impact of the typical sulfonamides on the enzyme activities of the soil[J]. Journal of Safety and Environment, 18(6): 2379-2382. | |
[45] | 张昊, 张利兰, 王佳, 等, 2012. 土霉素暴露对小麦根际抗生素抗性细菌及土壤酶活性的影响[J]. 生态学报, 32(2): 508-516. |
ZHANG H, ZHANG L L, WNAG J, et al., 2012. Influence of oxytetracycline exposure on antibiotic resistant bacteria and enzyme activities in wheat rhizosphere soil[J]. Acta Ecologica Sinica, 32(2): 508-516.
DOI URL |
|
[46] | 张书菡, 2019. 环境抗生素抑制土壤脲酶的毒性效应与机制研究[D]. 济南: 山东师范大学: 19-39. |
ZHANG S H, 2019. Study on toxicity and mechanism of environmental antibiotics inhibited soil urease[D]. Ji’nan: Shandong Normal University: 19-39. | |
[47] | 张文婕, 杨莉莉, 王金花, 等, 2020. 三种抗生素与铜复合污染对土壤过氧化氢酶活性的影响[J]. 农业资源与环境学报, 37(1): 135-143. |
ZHANG W J, YANG L L, WANG J H, et al., 2020. Effect of combined pollution of three antibiotics and Cu on soil catalase activity[J]. Journal of Agricultural Resources and Environment, 37(1): 135-143. |
[1] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[2] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[3] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[4] | WANG Fei, ZHAO Ying. Pollution Characteristics and Risk Assessment of PAHs in Agricultural Soil from Sewage Irrigation Area of Taiyuan City, Shanxi Province [J]. Ecology and Environment, 2022, 31(1): 160-169. |
[5] | LI Chunhuan, WANG Pan, HAN Cui, XU Yixin, HUANG Juying. Variation Characteristics of Soil Properties Around A Northwest Desert Coal-mining Region under Sulphur and Nitrogen Deposition [J]. Ecology and Environment, 2022, 31(1): 170-180. |
[6] | WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 62-69. |
[7] | LI Xin, CHEN Xiaohua, GU Hairong, QIAN Xiaoyong, SHEN Genxiang, ZHAO Qingjie, BAI Yujie. Distribution Characteristics and Influencing Factors of Enzyme Activities in Typical Farmland Soils [J]. Ecology and Environment, 2021, 30(8): 1634-1641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn