Ecology and Environment ›› 2022, Vol. 31 ›› Issue (10): 2002-2009.DOI: 10.16258/j.cnki.1674-5906.2022.10.008
• Research Articles • Previous Articles Next Articles
LI Mengli1(), XU Moxin1, CHEN Yongshan2, YE Lili1, JIANG Jinping1,3,*(
)
Received:
2022-06-14
Online:
2022-10-18
Published:
2022-12-09
Contact:
JIANG Jinping
李梦丽1(), 徐墨馨1, 陈永山2, 叶丽丽1, 蒋金平1,3,*(
)
通讯作者:
蒋金平
作者简介:
李梦丽(1996年生),女,硕士研究生,主要从事土壤环境与污染修复研究工作。E-mail: LiMengli1218@163.com
基金资助:
CLC Number:
LI Mengli, XU Moxin, CHEN Yongshan, YE Lili, JIANG Jinping. Effects of Different Amounts of Calcium Carbonate on the Mineralization of Straw Organic Carbon in Calcareous Soil[J]. Ecology and Environment, 2022, 31(10): 2002-2009.
李梦丽, 徐墨馨, 陈永山, 叶丽丽, 蒋金平. 石灰性土壤添加不同量碳酸钙对秸秆有机碳矿化的影响[J]. 生态环境学报, 2022, 31(10): 2002-2009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.10.008
Figure 1 Release rate of soil CO2 with different content of calcium carbonate CK: without adding any exogenous substances; C0: 5% straw treatment; C1: 5% straw+5% calcium carbonate treatment; C2: 5% straw+15% calcium carbonate treatment; C3: 5% straw+25% calcium carbonate treatment, The same below
Figure 4 Effects of different contents of calcium carbonate on soil microbial biomass carbon Different capital letters indicate that there is significant difference between different culture days of the same treatment, and different small letters indicate that there is significant difference between different treatments of the same culture days (P<0.05). The same below
因子 factor | CO2累积释放量 Cumulative release of soil CO2 | 微生物生物量碳 Microbial biomass carbon (MBC) | 溶解性有机碳 Dissolved organic carbon (DOC) |
---|---|---|---|
CO2累积释放量 Cumulative release of soil CO2 | 1 | 0.931** | 0.841** |
微生物生物量碳 Microbial biomass carbon (MBC) | 1 | 0.633* | |
溶解性有机碳 Dissolved organic carbon (DOC) | 1 |
Table 1 Correlation analysis between cumulative release of soil CO2 and active organic carbon content
因子 factor | CO2累积释放量 Cumulative release of soil CO2 | 微生物生物量碳 Microbial biomass carbon (MBC) | 溶解性有机碳 Dissolved organic carbon (DOC) |
---|---|---|---|
CO2累积释放量 Cumulative release of soil CO2 | 1 | 0.931** | 0.841** |
微生物生物量碳 Microbial biomass carbon (MBC) | 1 | 0.633* | |
溶解性有机碳 Dissolved organic carbon (DOC) | 1 |
[1] |
BINGEMAN C W, VARNER J E, MARTIN W P, 1953. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal, 17(1): 34-38.
DOI URL |
[2] |
BERTRAND I, DELFOSSE O, MARY B, 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects[J]. Soil biology & biochemistry, 39(1): 276-288.
DOI URL |
[3] |
CHEN S, XU C M, YAN J X, et al., 2016. The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast china[J]. Agriculture, Ecosystems & Environment, 223(1): 261-269.
DOI URL |
[4] |
DAI W, GAO H, SHA Z M, et al., 2020. Changes in soil organic carbon fractions in response to wheat straw incorporation in a subtropical paddy field in china[J]. Journal of Plant Nutrition and Soil Science, 184(2): 198-207.
DOI URL |
[5] |
EI-NAGGAR A H, USMAN A R A, AL-OMRAN A, et al., 2015. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar[J]. Chemosphere, 138: 67-73.
DOI URL |
[6] |
FATIMA S, RIAZ M, AL-WABEL M I, et al., 2021. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance c and n sequestration in nutrient-poor alkaline calcareous soil[J]. Journal of Soils and Sediments, 21(1): 148-162.
DOI URL |
[7] |
FENG S Z, HUANG Y, GE Y H, et al., 2016. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate[J]. Science of The Total Environment, 571: 615-623.
DOI URL |
[8] | GOCKE M, PUSTOVOYTOV K, KUZYAKOV Y, 2012. Pedogenic carbonate formation: Recrystallization versus migration—process rates and periods assessed by 14C labeling[J]. Global Biogeochemical Cycles, 26(1): 1-12. |
[9] |
GUO L Y, WU G L, LI Y, et al., 2016. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in eastern china[J]. Soil and Tillage Research, 156: 140-147.
DOI URL |
[10] |
HAMER U, MARSCHNER B, 2005. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions[J]. Soil Biology and Biochemistry, 37(3): 445-454.
DOI URL |
[11] |
KALBITZ K, SOLINGER S, PARK J H, et al., 2000. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 165(4): 277-304.
DOI URL |
[12] |
KUZYAKOV Y, BOL R, 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry, 38(4): 747-758.
DOI URL |
[13] |
LI Y S, YU Z H, YANG S C, et al., 2019. Impact of elevated CO2on C꞉N꞉P ratio among soybean cultivars[J]. Science of The Total Environment, 694(1): 133784.
DOI URL |
[14] |
LI Z P, LIU M, WU X C, et al., 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical china[J]. Soil and Tillage Research, 106(2): 268-274.
DOI URL |
[15] | SETIA R, MARSCHNER P, BALDOCK J, et al., 2010. Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate?[J]. Biology & Fertility of Soils, 46(8): 781-792. |
[16] |
SHEN L D, WU H S, GAO Z Q, et al., 2016. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats[J]. Scientific Reports, 6(1): 25647.
DOI URL |
[17] |
SONG X, HUANG L P, LU H, et al., 2020. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system[J]. Biochemical Engineering Journal, 155: 107467.
DOI URL |
[18] |
WU J, BROOKES P C, JENKINSON D S, 1993. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil[J]. Soil Biology and Biochemistry, 25(10): 1435-1441.
DOI URL |
[19] |
XU M G, LOU Y L, SUN X L, et al., 2011. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 47(7): 745.
DOI URL |
[20] |
YAGI K, MINAMI K, 1990. Effect of organic matter application on methane emission from some japanese paddy fields[J]. Soil Science and Plant Nutrition, 36(4): 599-610.
DOI URL |
[21] | 陈春梅, 谢祖彬, 朱建国, 2006. 土壤有机碳激发效应研究进展[J]. 土壤, 38(4): 359-365. |
CHEN C M, XIE Z B, ZHU J G, 2006. Advances in research on priming effect of soil organic carbon[J]. Soils, 38(4): 359-365. | |
[22] | 陈磊, 熊康宁, 杭红涛, 2019. 贵州喀斯特地区野生饲用牧草资源的开发与保护[J]. 中国饲料, 21(1): 4-8. |
CHEN L, XIONG K N, HANG H T, 2019. Development and protection of wild forage resources in karst region of Guizhou Province[J]. China Food, 21(1): 4-8. | |
[23] | 陈晓芬, 刘明, 江春玉, 等, 2018. 不同施肥处理红壤性水稻土团聚体有机碳矿化特征[J]. 中国农业科学, 51(17): 3325-3334. |
CHEN X F, LIU M, JIANG C Y, et al., 2018. Organic carbon mineralization in aggregate fractions of red paddy soil under different fertilization treatments[J]. Scientia Agricultura Sinica, 51(17): 3325-3334. | |
[24] | 陈佑启, VERBUGR P H, 2000. 中国土地利用/土地覆盖的多尺度空间分布特征分析[J]. 地理科学, 20(3): 197-202. |
CHEN Y Q, VERBUGR P H, 2000. Multi-scale spatial distribution of land use/land cover in China[J]. Scientia Geographica Sinica, 20(3): 197-202. | |
[25] | 杜雪, 王海燕, 2022. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 35(1): 76-81. |
DU X, WANG H Y, 2022. Active components of forest soil organic carbon and its influencing factors in china[J]. World Forestry Research, 35(1): 76-81. | |
[26] | 段文军, 王金叶, 2013. 广西喀斯特和红壤地区桉树人工林土壤理化性质对比研究[J]. 生态环境学报, 22(4): 595-597. |
DUAN W J, WANG J Y, 2013. Comparative study on the physical and chemical properties of eucalyptus plantation soil in Guangxi Karst and red soil area[J]. Ecology and Environmental Sciences, 22(4): 595-597. | |
[27] | 葛云辉, 苏以荣, 邹冬生, 等, 2012. 桂西北石灰土土壤有机碳矿化对外源有机物质和碳酸钙的响应[J]. 生态学杂志, 31(11): 2748-2754. |
GE Y H, SU Y R, ZOU D S, et al., 2012. Organic carbon mineralization in lime soils in Karst region of Guangxi, South China in response to exogenous organic substrate and calcium carbonate[J]. Chinese Journal of Ecology, 31(11): 2748-2754. | |
[28] | 黄媛, 苏以荣, 梁士楚, 等, 2013. 桂西北典型土壤有机碳矿化对碳酸钙与水分含量的响应[J]. 生态学杂志, 32(10): 2695-2702. |
HUANG Y, SU Y R, LIANG S C, et al., 2013. Responses of organic carbon mineralization in typical soils in northwest Guangxi of China to calcium carbonate and soil moisture[J]. Chinese Journal of Ecology, 32(10): 2695-2702. | |
[29] |
贾生强, 范惠珊, 陈喜靖, 等, 2021. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 33(9): 1686-1699.
DOI |
JIA S Q, FAN H S, CHEN X J, et al., 2021. Driving mechanism of soil denitrifying bacterial community by soil organic carbon after long term of straw return[J]. Acta Agriculturae Zhejiangensis, 33(9): 1686-1699. | |
[30] | 冷雪梅, 钱九盛, 张旭辉, 等, 2022. 添加外源有机物对长期不同施肥处理水稻土有机碳矿化的影响[J]. 南京农业大学学报, 45(1): 103-112. |
LENG X M, QIAN J S, ZHANG X H, et al., 2022. Effects of maize straw addition on the mineralization of organic carbon in paddy soils with long-term fertilizations[J]. Journal of Nanjing Agricultural University, 45(1): 103-112. | |
[31] | 李艾蒙, 李慧, 裴久渤, 等, 2019. 玉米秸秆施用对棕壤有机碳激发效应及温度敏感性的影响[J]. 农业环境科学学报, 38(12): 2788-2796. |
LI A M, LI H, PEI J B, et al., 2019. Effects of maize straw application on organic carbon' s priming effect and temperature sensitivity in brown earth[J]. Journal of Agro-Environment Science, 38(12): 2788-2796. | |
[32] | 李顺姬, 邱莉萍, 张兴昌, 2010. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 30(5): 1217-1226. |
LI S J, QIU L P, ZHANG X C, 2010. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau[J]. Acta Ecologica Sinica, 30(5): 1217-1226. | |
[33] | 李杨, 苏以荣, 何寻阳, 等, 2012. 桂西北棕色石灰土和红壤有机碳矿化特征和差异[J]. 农业现代化研究, 33(5): 632-635. |
LI Y, SU Y R, HE X Y, et al., 2012. Characteristics and discrepancies of soil organic carbon mineralization for brown limestone soil and red soil in northwest Guangxi[J]. Research of Agricultural Modernization, 33(5): 632-635. | |
[34] | 李忠佩, 张桃林, 陈碧云, 2004. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 41(4): 544-552. |
LI Z P, ZHANG T L, CHEN B Y, 2004. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 41(4): 544-552. | |
[35] | 林仕芳, 王小利, 段建军, 等, 2022. 有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响[J]. 环境科学, 43(4): 2219-2225. |
LIN S F, WANG X L, DUAN J J, et al., 2022. Effects of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active organic carbon in dryland yellow soil[J]. Environmental Science, 43(4): 2219-2225. | |
[36] | 刘赛男, 高尚, 程效义, 等, 2019. 玉米秸秆生物炭对秸秆腐熟进程、养分含量和CO2排放量的影响[J]. 应用生态学报, 30(4): 1312-1318. |
LIU S N, GAO S, CHENG X Y, et al., 2019. Effects of corn straw biochar on process, nutrient content, and CO2emissions of corn straw decomposition[J]. Chinese Journal of Applied Ecology, 30(4): 1312-1318. | |
[37] | 罗梅, 田冬, 高明, 等, 2018. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 39(9): 4327-4337. |
LUO M, TIAN D, GAO M, et al., 2018. Soil organic carbon of purple soil as affected by different application of biochar[J]. Environmental Science, 39(9): 4327-4337. | |
[38] | 马欣, 魏亮, 唐美玲, 等, 2018. 长期不同施肥对稻田土壤有机碳矿化及激发效应的影响[J]. 环境科学, 39(12): 5680-5686. |
MA X, WEI L, TANG M L, et al., 2018. Effects of varying long-term fertilization on organic carbon mineralization and priming effect of paddy soil[J]. Environmental Science, 39(12): 5680-5686. | |
[39] |
史登林, 王小利, 段建军, 等, 2020. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响[J]. 应用生态学报, 31(12): 4117-4124.
DOI |
SHI D L, WANG X L, DUAN J J, et al., 2020. Effects of chemical N fertilizer reduction combined with biochar application on soil organic carbon active components and mineralization in paddy fields of yellow soil[J]. Chinese Journal of Applied Ecology, 31(12): 4117-4124. | |
[40] | 苏有健, 廖万有, 王烨军, 等, 2014. 茶园土壤中钙迁移行为的土柱模拟研究[J]. 水土保持学报, 28(1): 26-30. |
SU Y J, LIAO W Y, WANG Y J, et al., 2014. Modeling vertical migration behavior of calcium in tea garden by soil columns leaching[J]. Journal of Soil and Water Conservation, 28(1): 26-30. | |
[41] | 魏圆云, 崔丽娟, 张曼胤, 等, 2019. 土壤有机碳矿化激发效应的微生物机制研究进展[J]. 生态学杂志, 38(4): 1202-1211. |
WEI Y Y, CUI L J, ZHANG M Y, et al., 2019. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization[J]. Chinese Journal of Ecology, 38(4): 1202-1211. | |
[42] | 吴静, 陈书涛, 胡正华, 等, 2015. 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系[J]. 环境科学, 36(4): 1497-1506. |
WU J, CHEN S T, HU Z H, et al., 2015. Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase[J]. Environmental Science, 36(4): 1497-1506.
DOI URL |
|
[43] | 肖谋良, 陈香碧, 李杨, 等, 2014. 棕色石灰土和红壤碳释放对添加矿物质(Fe(OH)3和CaCO3)的响应[J]. 生态学杂志, 33(11): 2936-2942. |
XIAO M L, CHEN X B, LI Y, et al., 2014. Carbon release from brown limestone and red soils in response to addition of Fe(OH)3and CaCO3[J]. Chinese Journal of Ecology, 33(11): 2936-2942. | |
[44] | 肖烨, 黄志刚, 2019. 湿地土壤有机碳稳定性的微生物学影响机制[J]. 安徽农业科学, 47(20): 15-17. |
XIAO Y, HUANG Z G, 2019. Mechanism of microbiological influence on soil organic carbon stability in wetland[J]. Journal of Anhui Agricultural Sciences, 47(20): 15-17. | |
[45] | 闫雷, 周丽婷, 孟庆峰, 等, 2020. 有机物料还田对黑土有机碳及其组分的影响[J]. 东北农业大学学报, 51(5): 40-46. |
YAN L, ZHOU L T, MENG Q F, et al., 2020. Effect of organic materials returning on soil organic carbon concentration and soil organic fractions in the black soil area[J]. Journal of Northeast Agricultural University, 51(5): 40-46. | |
[46] | 杨开军, 杨万勤, 贺若阳, 等, 2017. 川西亚高山3种典型森林土壤碳矿化特征[J]. 应用与环境生物学报, 23(5): 851-856. |
YANG K J, YANG W Q, HE R Y, et al., 2017. Soil organic carbon mineralization characteristics of three dominant subalpine forests in western Sichuan, China[J]. Chinese Journal of Applied and Environmental Biology, 23(5): 851-856. | |
[47] | 郑斯尹, 陈莉莎, 谢德晋, 2019. 不同氮肥用量对玉米田土壤酶活性及微生物量碳、氮的影响[J]. 中国水土保持, 448(7): 58-60, 73. |
ZHENG S Y, CHEN L S, XIE D J, 2019. Effects of different nitrogen application rates on soil enzyme activity and microbial biomass carbon and nitrogen in maize farmland[J]. Soil and Water Conservation in China, 448(7): 58-60, 73. | |
[48] | 周萍, 潘根兴, 李恋卿, 等, 2009. 南方典型水稻土长期试验下有机碳积累机制v.碳输入与土壤碳固定[J]. 中国农业科学, 42(12): 4260-4268. |
ZHOU P, PAN G X, LI L Q, et al., 2009. SOC enhancement in major types of paddy soils in a long-term agro-ecosystem experiment in south China. v. relationship between carbon input and soil carbon sequestration[J]. Scientia Agricultura Sinica, 42(12): 4260-4268. |
[1] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[4] | HUANG Qiaoyi, YU Junhong, HUANG Jianfeng, HUANG Xu, LI Ping, FU Hongting, TANG Shuanhu, LIU Yifeng, XU Peizhi. Nutrient Resources of Main Crop Straw and Its Potential of Substituting for Chemical Fertilizer in Guangdong Province [J]. Ecology and Environment, 2022, 31(2): 297-306. |
[5] | HAO Xiaoyu, WANG Xiaojun, GAO Hongsheng, MAO Mingyan, SUN Lei, MA Xingzhu, ZHOU Baoku, CHI Fengqin, LI Weiqun. Estimation of Greenhouse Gas Emission and Carbon Footprint of Farmland under Different Straw Returning Methods in Songnen Plain [J]. Ecology and Environment, 2022, 31(2): 318-325. |
[6] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[7] | SHI Hanzhi, LIU Fan, HUANG Yongdong, WU Zhichao, LI Furong, XU Shoujun, DENG Tenghaobo, WEN Dian, WANG Xu, WANG Fuhua, JIANG Qi, DU Ruiying. Effects of Dynamic Change of Dissolved Organic Matter in Soil on Water-Soluble Copper [J]. Ecology and Environment, 2021, 30(9): 1896-1902. |
[8] | ZOU Chenyi, DING Hong, WANG Yasa, ZHANG Yushu, YU Juhua, ZHENG Xiangzhou. Effect of Straw on Urea Nitrogen Transformation in Soil [J]. Ecology and Environment, 2021, 30(6): 1213-1219. |
[9] | XU Zhiyu, XUE Yinghao, ZHANG Jun, SUN Renhua, SHI Zuliang, HE Tianyi, WANG Jiuchen. Research Hotspots and Frontiers of Comprehensive Utilization of Straw on Bibliometric Analysis [J]. Ecology and Environment, 2021, 30(6): 1310-1320. |
[10] | ZHANG Bingbing, YANG Zhao, XUE Bin, DING Xiaoyan, LOU Jinfen, WANG Sheng, CHEN Weijie, XU Guomin. Adsorption of Aquatic Hg2+ by Biochar Obtained from Coix Straw [J]. Ecology and Environment, 2021, 30(5): 1051-1059. |
[11] | CONG Xin, LI Yao, WANG Yu, ZHENG Li. Adsorption Characterization of Atrazine in Aqueous Medium on Goethite Biochar Composites [J]. Ecology and Environment, 2021, 30(10): 2067-2075. |
[12] | ZHANG Zixuan, NIU Beibei, LI Xinju. Effect of Different Improvement Modes on Physical and Chemical Characters of the Coastal Saline Soil [J]. Ecology and Environment, 2020, 29(2): 275-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn