Ecology and Environment ›› 2021, Vol. 30 ›› Issue (9): 1916-1922.DOI: 10.16258/j.cnki.1674-5906.2021.09.016
• Research Articles • Previous Articles Next Articles
LIU Zhuguang(), FANG Zhang(
), DING Xiaofan
Received:
2021-05-21
Online:
2021-09-18
Published:
2021-12-08
Contact:
FANG Zhang
通讯作者:
方樟
作者简介:
刘柱光(1997年生),男,硕士研究生,主要研究方向为土壤及地下水污染修复。E-mail: liuzhuguang22@163.com
基金资助:
CLC Number:
LIU Zhuguang, FANG Zhang, DING Xiaofan. Heavy Metal Pollution and Health Risk Assessment of Soil in Ash Yard of Coal-fired Power Plant[J]. Ecology and Environment, 2021, 30(9): 1916-1922.
刘柱光, 方樟, 丁小凡. 燃煤电厂贮灰场土壤重金属污染及健康风险评价[J]. 生态环境学报, 2021, 30(9): 1916-1922.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.09.016
参数 Parameter | 含义 Meaning | 取值 Value | |
---|---|---|---|
成人 Adult | 儿童 Child | ||
x1 | 经口摄入的土壤量 Soil ingestion rate/(mg∙d-1) | 100 | 200 |
x2 | 吸入空气量 Inhalation rate/(mg∙d-1) | 20 | 5 |
x3 | 土壤尘生产因子 Particle emission factor/(m3∙kg-1) | 1.36×109 | 1.36×109 |
x4 | 接触土壤的皮肤面积 Skin area exposed to soil contact/cm2 | 4350 | 1600 |
x5 | 皮肤暴露率 Skin exposure rate | 0.07 | 0.2 |
x6 | 暴露时间 Exposure duration/a | 30 | 6 |
x7 | 年暴露频率 Exposure frequency/(d∙a-1) | 300 | 300 |
x8 | 体重 Body weight/kg | 60 | 15 |
x9 | 非致癌平均作用时间 Average time for non-carcinogenic effect/d | 10950 | 6570 |
致癌平均作用时间 Average time for carcinogenic effect/d | 25550 | 25550 | |
x10 | 转换系数 Conversion factor | 10-6 | 10-6 |
x11 | 皮肤吸收系数 Contact factor | 0.001 | 0.001 |
Table 1 Values of human health risk assessment parameters
参数 Parameter | 含义 Meaning | 取值 Value | |
---|---|---|---|
成人 Adult | 儿童 Child | ||
x1 | 经口摄入的土壤量 Soil ingestion rate/(mg∙d-1) | 100 | 200 |
x2 | 吸入空气量 Inhalation rate/(mg∙d-1) | 20 | 5 |
x3 | 土壤尘生产因子 Particle emission factor/(m3∙kg-1) | 1.36×109 | 1.36×109 |
x4 | 接触土壤的皮肤面积 Skin area exposed to soil contact/cm2 | 4350 | 1600 |
x5 | 皮肤暴露率 Skin exposure rate | 0.07 | 0.2 |
x6 | 暴露时间 Exposure duration/a | 30 | 6 |
x7 | 年暴露频率 Exposure frequency/(d∙a-1) | 300 | 300 |
x8 | 体重 Body weight/kg | 60 | 15 |
x9 | 非致癌平均作用时间 Average time for non-carcinogenic effect/d | 10950 | 6570 |
致癌平均作用时间 Average time for carcinogenic effect/d | 25550 | 25550 | |
x10 | 转换系数 Conversion factor | 10-6 | 10-6 |
x11 | 皮肤吸收系数 Contact factor | 0.001 | 0.001 |
元素 Element | Dk/(mg∙kg-1∙d-1) | Fk/(kg∙d∙mg-1) | |||||
---|---|---|---|---|---|---|---|
DIng | DInh | DDerm | FIng | FInh | FDerm | ||
Cu | 4.0×10-2 | 4.02×10-2 | 1.2×10-2 | — | — | — | |
Zn | 0.3 | 0.3 | 6.0×10-2 | — | — | — | |
Ni | 2.0×10-2 | 2.06×10-2 | 5.4×10-3 | — | 0.84 | — | |
Cr | 3.0×10-3 | 2.86×10-5 | 6.0×10-5 | 0.5 | 42 | — | |
Pb | 3.5×10-3 | 3.52×10-3 | 5.25×10-4 | — | — | — | |
Cd | 1.0×10-3 | 1.0×10-3 | 1.0×10-5 | 6.1 | 1.8×10-3 | 6.1 | |
As | 3.0×10-4 | 1.23×10-4 | 3.0×10-4 | 1.5 | 4.3×10-3 | 1.5 |
Table 2 Reference doses and carcinogenic slope factors for different exposure routes of heavy metals
元素 Element | Dk/(mg∙kg-1∙d-1) | Fk/(kg∙d∙mg-1) | |||||
---|---|---|---|---|---|---|---|
DIng | DInh | DDerm | FIng | FInh | FDerm | ||
Cu | 4.0×10-2 | 4.02×10-2 | 1.2×10-2 | — | — | — | |
Zn | 0.3 | 0.3 | 6.0×10-2 | — | — | — | |
Ni | 2.0×10-2 | 2.06×10-2 | 5.4×10-3 | — | 0.84 | — | |
Cr | 3.0×10-3 | 2.86×10-5 | 6.0×10-5 | 0.5 | 42 | — | |
Pb | 3.5×10-3 | 3.52×10-3 | 5.25×10-4 | — | — | — | |
Cd | 1.0×10-3 | 1.0×10-3 | 1.0×10-5 | 6.1 | 1.8×10-3 | 6.1 | |
As | 3.0×10-4 | 1.23×10-4 | 3.0×10-4 | 1.5 | 4.3×10-3 | 1.5 |
统计指标 Statistical indicators | pH | w(heavy metal)/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
最小值 Min | 5.74 | 37.19 | 15.51 | 10.92 | 31.06 | 1.83 | 0.62 | 21.28 |
最大值 Max | 9.15 | 83.13 | 137.95 | 126.28 | 164.61 | 14.27 | 1.84 | 71.66 |
平均值±标准差 Mean±SD | 7.64±0.74 | 55.63±12.23 | 30.52±25.80 | 32.73±25.29 | 86.29±43.91 | 4.20±3.03 | 1.11±0.31 | 36.38±13.48 |
变异系数Cv/% | 10 | 22 | 85 | 77 | 51 | 72 | 28 | 37 |
背景值 Background value | 6.1 | 47.16 | 23.19 | 17.22 | 90.05 | 5.66 | 0.1101 | 25.61 |
风险筛选值 Risk screening value | — | 250 | 190 | 100 | 300 | 25 | 0.6 | 170 |
Table 3 Characteristics of heavy metal content in soil of the study area
统计指标 Statistical indicators | pH | w(heavy metal)/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
最小值 Min | 5.74 | 37.19 | 15.51 | 10.92 | 31.06 | 1.83 | 0.62 | 21.28 |
最大值 Max | 9.15 | 83.13 | 137.95 | 126.28 | 164.61 | 14.27 | 1.84 | 71.66 |
平均值±标准差 Mean±SD | 7.64±0.74 | 55.63±12.23 | 30.52±25.80 | 32.73±25.29 | 86.29±43.91 | 4.20±3.03 | 1.11±0.31 | 36.38±13.48 |
变异系数Cv/% | 10 | 22 | 85 | 77 | 51 | 72 | 28 | 37 |
背景值 Background value | 6.1 | 47.16 | 23.19 | 17.22 | 90.05 | 5.66 | 0.1101 | 25.61 |
风险筛选值 Risk screening value | — | 250 | 190 | 100 | 300 | 25 | 0.6 | 170 |
标准类型 Criterion | pH | 重金属元素 Heavy metal | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
>背景值 >Background value | 95% | 75% | 60% | 80% | 40% | 15% | 100% | 85% |
>风险筛选值 >Risk screening value | — | 0 | 0 | 5% | 0 | 0 | 100% | 0 |
Table 4 Proportion of soil heavy metal pollution exceeding the criterion
标准类型 Criterion | pH | 重金属元素 Heavy metal | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Cd | Pb | ||
>背景值 >Background value | 95% | 75% | 60% | 80% | 40% | 15% | 100% | 85% |
>风险筛选值 >Risk screening value | — | 0 | 0 | 5% | 0 | 0 | 100% | 0 |
人群 Exposed crowd | 重金属 Heavy metal | 非致癌日均暴露剂量 Non-carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 致癌日均暴露剂量 Carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 危险系数 H | 致癌指数 R | |||||
---|---|---|---|---|---|---|---|---|---|---|
经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | 经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | |||||
成人 Adult | Cr | 7.62×10-5 | 1.12×10-8 | 2.32×10-7 | 3.27×10-5 | 4.80×10-9 | — | 0.030 | 1.65×10-5 | |
Ni | 4.18×10-5 | 6.15×10-9 | 1.27×10-7 | — | 2.64×10-9 | — | 0.002 | 2.21×10-9 | ||
Cu | 4.48×10-5 | 6.59×10-9 | 1.37×10-7 | — | — | — | 0.001 | — | ||
Zn | 1.18×10-4 | 1.74×10-8 | 3.60×10-7 | — | — | — | 0.001 | — | ||
As | 5.75×10-6 | 8.45×10-10 | 1.75×10-8 | 2.46×10-6 | 3.62×10-10 | 7.50×10-9 | 0.019 | 3.70×10-6 | ||
Cd | 1.52×10-6 | 2.24×10-10 | 4.63×10-9 | 6.52×10-7 | 9.58×10-11 | 1.98×10-9 | 0.002 | 3.99×10-6 | ||
Pb | 4.98×10-5 | 7.33×10-9 | 1.52×10-7 | — | — | — | 0.015 | — | ||
儿童 Child | Cr | 6.10×10-4 | 1.12×10-8 | 9.75×10-7 | 5.23×10-5 | 9.61×10-10 | — | 0.220 | 2.62×10-5 | |
Ni | 3.34×10-4 | 6.15×10-9 | 5.35×10-7 | — | 5.27×10-10 | — | 0.017 | 4.43×10-10 | ||
Cu | 3.59×10-4 | 6.59×10-9 | 5.74×10-7 | — | — | — | 0.009 | — | ||
Zn | 9.46×10-4 | 1.74×10-8 | 1.51×10-6 | — | — | — | 0.003 | — | ||
As | 4.60×10-5 | 8.45×10-10 | 7.35×10-8 | 3.94×10-6 | 7.24×10-11 | 6.30×10-9 | 0.153 | 5.92×10-6 | ||
Cd | 1.22×10-5 | 2.24×10-10 | 1.95×10-8 | 1.04×10-6 | 1.92×10-11 | 1.67×10-9 | 0.014 | 6.37×10-6 | ||
Pb | 3.99×10-4 | 7.33×10-9 | 6.38×10-7 | — | — | — | 0.115 | — |
Table 5 Human health risk assessment results
人群 Exposed crowd | 重金属 Heavy metal | 非致癌日均暴露剂量 Non-carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 致癌日均暴露剂量 Carcinogenic daily average exposure/(mg∙kg-1∙d-1) | 危险系数 H | 致癌指数 R | |||||
---|---|---|---|---|---|---|---|---|---|---|
经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | 经口摄入 Oral intake | 呼吸摄入 Inhalation | 皮肤接触 Skin contact | |||||
成人 Adult | Cr | 7.62×10-5 | 1.12×10-8 | 2.32×10-7 | 3.27×10-5 | 4.80×10-9 | — | 0.030 | 1.65×10-5 | |
Ni | 4.18×10-5 | 6.15×10-9 | 1.27×10-7 | — | 2.64×10-9 | — | 0.002 | 2.21×10-9 | ||
Cu | 4.48×10-5 | 6.59×10-9 | 1.37×10-7 | — | — | — | 0.001 | — | ||
Zn | 1.18×10-4 | 1.74×10-8 | 3.60×10-7 | — | — | — | 0.001 | — | ||
As | 5.75×10-6 | 8.45×10-10 | 1.75×10-8 | 2.46×10-6 | 3.62×10-10 | 7.50×10-9 | 0.019 | 3.70×10-6 | ||
Cd | 1.52×10-6 | 2.24×10-10 | 4.63×10-9 | 6.52×10-7 | 9.58×10-11 | 1.98×10-9 | 0.002 | 3.99×10-6 | ||
Pb | 4.98×10-5 | 7.33×10-9 | 1.52×10-7 | — | — | — | 0.015 | — | ||
儿童 Child | Cr | 6.10×10-4 | 1.12×10-8 | 9.75×10-7 | 5.23×10-5 | 9.61×10-10 | — | 0.220 | 2.62×10-5 | |
Ni | 3.34×10-4 | 6.15×10-9 | 5.35×10-7 | — | 5.27×10-10 | — | 0.017 | 4.43×10-10 | ||
Cu | 3.59×10-4 | 6.59×10-9 | 5.74×10-7 | — | — | — | 0.009 | — | ||
Zn | 9.46×10-4 | 1.74×10-8 | 1.51×10-6 | — | — | — | 0.003 | — | ||
As | 4.60×10-5 | 8.45×10-10 | 7.35×10-8 | 3.94×10-6 | 7.24×10-11 | 6.30×10-9 | 0.153 | 5.92×10-6 | ||
Cd | 1.22×10-5 | 2.24×10-10 | 1.95×10-8 | 1.04×10-6 | 1.92×10-11 | 1.67×10-9 | 0.014 | 6.37×10-6 | ||
Pb | 3.99×10-4 | 7.33×10-9 | 6.38×10-7 | — | — | — | 0.115 | — |
[1] |
ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al., 2004. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 122(2-4): 121-142.
DOI URL |
[2] | DAVIDSON R M, 2000. Modes of occurrence of trace elements in coal: Results from an international collaborative program[J]. Abstracts of Papers of American Chemical Society, 220: U388-U388. |
[3] |
EZIZ M, MOHAMMAD A, MAMUT A, et al., 2018. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China[J]. Human and Ecological Risk Assessment, 24(5-6): 1352-1366.
DOI URL |
[4] |
GAO J, WANG L C, 2018. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai, China[J]. Environmental Science and Pollution Research, 25(27): 27090-27105.
DOI URL |
[5] |
GUPTA D K, RAI U N, TRIPATHI R D, et al., 2002. Impacts of fly-ash on soil and plant responses[J]. Journal of Plant Research, 115(1122): 401-409.
DOI URL |
[6] |
JAMIL S, ABHILASH P C, SINGH A, et al., 2009. Fly ash trapping and metal accumulating capacity of plants: Implication for green belt around thermal power plants[J]. Landscape and Urban Planning, 92(2): 136-147.
DOI URL |
[7] |
JONES K C, 1991. Contaminant trends in soils and crops[J]. Environmental Pollution, 69(4): 311-325.
DOI URL |
[8] |
RAJ D, MAITI S K, 2020. Risk assessment of potentially toxic elements in soils and vegetables around coal-fired thermal power plant: A case study of Dhanbad, India[J]. Environmental Monitoring and Assessment, 192(11): 699.
DOI URL |
[9] |
SHOEVA T E, KAMINSKII Y D, 2010. Kyzyl ash disposal area as a source of unfavorable effect on the environment[J]. Contemporary Problems of Ecology, 3(6): 647-652.
DOI URL |
[10] | SWAINE D J, 2000. Why trace elements are important[J]. Fuel Process Technology, 65(1): 21-33. |
[11] | TOMLINSON D L, WILSON J G, HARRIS C R, et al., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgolnder Meeresuntersuchungen, 33(1): 566-575. |
[12] | US EPA, 1989. Risk assessment guidance for superfund: volume II environmental evaluation manual, interim final[J]. Saúde Pública, 804(7): 636-640. |
[13] |
VASEEM H, BANERJEE T K, 2013. Contamination of Metals in Different Tissues of Rohu (Labeo rohita, Cyprinidae) Collected from the Indian River Ganga[J]. Bulletin of Environmental Contamination and Toxicology, 91(1): 36-41.
DOI URL |
[14] |
WANG M S, HAN Q, GUI C L, et al., 2019. Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China[J]. Science of the Total Environment, 676: 1-10.
DOI URL |
[15] |
ZHANG Y, WU D, WANG C, et al., 2020. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil[J]. Ecosystem Health and Sustainability, DOI: 10.1080/20964129.2020.1787092.
DOI |
[16] |
ZHENG S N, WANG Q, YUAN Y Z, et al., 2020. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, DOI: 10.1016/j.foodchem.2020.126213.
DOI |
[17] |
ZOU Y P, LI Y H, HU L, et al., 2020. Health risk assessment of arsenic in soils from three thermal power plants in Southwest China[J]. Human and Ecological Risk Assessment, 26(5): 1221-1233.
DOI URL |
[18] | 曹冉, 孜比布拉∙司马义, 杨胜天, 等, 2020. 典型蔬菜基地土壤重金属健康风险评价[J]. 江苏农业科学, 48(4): 246-253. |
CAO R, CUMINBIBRA I, YANG S T, et al., 2020. Health risk assessment of heavy metals in typical vegetable base soils[J]. Jiangsu Agricultural Sciences, 48(4): 246-253 | |
[19] | 陈耿, 刘军, 杨立辉, 等, 2016. 燃煤电厂周边地区积尘重金属污染特征与健康风险评价[J]. 中山大学学报 (自然科学版), 55(1): 107-113. |
CHEN G, LIU J, YANG L H, et al., 2016. Pollution characteristics and health risk assessment of heavy metals in dust surrounding a coal-fired power plant[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55(1): 107-113. | |
[20] | 程家丽, 张信伟, 唐阵武, 2016. 典型燃煤电厂周边蔬菜重金属累积特征及人体健康风险[J]. 卫生研究, 45(2): 241-245. |
CHENG J L, ZHANG X W, TANG Z W, 2016. Accumulation and health risks of heavy metals in vegetables around a typical coal-fired power plant[J]. Journal of Hygiene Research, 45(2): 241-245. | |
[21] | 崔龙鹏, 刘培陶, 白建峰, 等, 2008. 淮南粉煤灰处置场周围土壤中若干金属污染调查[J]. 土壤通报, 39(3): 660-664. |
CUI L P, LIU P T, BAI J F, et al., 2008. Investigation of metal contamination in soils surrounding huainan coal ash disposal sites[J]. Chinese Journal of Soil Science, 39(3): 660-664. | |
[22] | 窦路, 2016. 煤炭行业现状及环保型煤炭开采利用[J]. 地球 (9): 402. |
DOU L, 2016. Current status of the coal industry and environmental protection coal mining and utilization[J]. The Earth (9): 402. | |
[23] | 党志, 刘丛强, 李忠, 2001. 煤矸石中微量重金属元素化学活性的实验模拟研究[J]. 华南理工大学学报 (自然科学版), 29(12): 1-5. |
DANG Z, LIU C Q, LI Z, 2001. Experimental simulation of chemical activity of heavy metals in coal gangue[J]. Journal of South China University of Technology (Natural Science Edition), 29(12): 1-5. | |
[24] | 郝炜, 2007. 粉煤灰内金属浸溶特性的试验和模拟研究[D]. 武汉: 华中科技大学. |
HAO W, 2007. The experimental investigation and simulation on the leaching behavior of metals in fly ash of power plant[D]. Wuhan: Huazhong University of Science and Technology. | |
[25] | 环境保护部, 2013. 中国人群暴露参数手册 (成人卷)[M]. 北京: 中国环境出版社 |
MEP, 2013. Exposure factors handbook of Chinese population adults (Adults)[M]. Beijing: China Environmental Press. | |
[26] | 黄安, 杨联安, 杜挺, 2014. 基于主成分分析的土壤养分综合评价[J]. 干旱区研究, 31(5): 819-825. |
HUANG A, YANG L A, DU T, et al., 2014. Comprehensive assessment of soil nutrients based on PCA[J]. Arid Zone Research, 31(5): 819-825. | |
[27] | 黄双, 2007. 吉林热电厂灰库渗漏分析[D]. 长春: 吉林大学. |
HUANG S, 2007. The seepage analysis of ash reservoir of jilin pypoelectricity company[D]. Changchun: Jilin University. | |
[28] | 姜林, 王岩, 2004. 场地环境评价指南[M]. 北京: 中国环境科学出版社 |
JIANG L, WANG Y, 2004. Environmental site assessment guideline[M]. Beijing: China Environmental Science Press. | |
[29] | 金丕兴, 1993. 吉林省土壤环境背景值研究[J]. 吉林地质科技情报 (3): 13-24. |
JIN P X, 1993. Research on the background value of soil environment in Jilin province[J]. Jilin Geological Science and Technology Information (3): 13-24. | |
[30] | 施宸皓, 王云燕, 柴立元, 等, 2020. 洞庭湖湿地周围表层土壤重金属污染及其人体健康风险评价[J]. 中国有色金属学报, 30(1): 150-161. |
SHI C H, WANG Y Y, CHAI L Y, et al., 2020. Assessment of heavy metal and human health risk in surface soils around Dongting Lake wetland, China[J]. The Chinese Journal of Nonferrous Metals, 30(1): 150-161. | |
[31] | 孙敏, 唐莹, 郝亚婷, 等, 2021. 红枫湖水源地附近粉煤灰堆积场重金属存在形态及静态淋溶规律[J]. 环境化学, 40(3): 678-686. |
SUN M, TANG Y, HAO Y T, et al., 2021. Heavy metal existence and static leaching rules in fly ash accumulation field near Hongfeng Lake water source[J]. Environmental Chemistry, 40(3): 678-686. | |
[32] | 王洪义, 刘克, 2011. 粉煤灰污染环境原因分析及回收利用[J]. 科技信息 (14): 698. |
WANG H Y, LIU K, 2011. Analysis of environmental pollution caused by fly ash and its recycling[J]. Science & Technology Information (14): 698. | |
[33] | 王婕, 刘桂建, 方婷, 等, 2013. 基于污染负荷指数法评价淮河 (安徽段) 底泥中重金属污染研究[J]. 中国科学技术大学学报, 43(2): 97-103. |
WANG J, LIU G J, FANG T, et al., 2013 Assessment of pollution characteristics of heavy metals in the sediments of Huaihe River (Anhui Section) by pollution load index[J]. Journal of University of Science and Technology of China, 43(2): 97-103. | |
[34] | 王立婷, 刘仁志, 2020. 土壤污染风险评价研究进展[J]. 中国环境管理, 12(2): 62-68. |
WANG L T, LIU R Z, 2020. Research progress on soil pollution risk assessment[J]. Chinese Journal of Environmental Management, 12(2): 62-68. | |
[35] | 徐友宁, 张江华, 柯海玲, 等, 2014. 某金矿区农田土壤重金属污染的人体健康风险[J]. 地质通报, 33(8): 1239-1252. |
Xu Y N, Zhang J H, Ke H L, et al., 2014. Human health risk under the condition of farmland soil heavy metals pollution in a gold mining area.[J]Geological Bulletin of China, 33(8): 1239-1252. | |
[36] | 闫晓露, 郑欢, 赵烜杭, 等, 2020. 辽东湾北部河口区土壤重金属污染源识别及健康风险评价[J]. 环境科学学报, 40(8): 3028-3039. |
YAN X L, ZHENG H, ZHAO X H, et al., 2020. Source identification and health risk assessment of soil heavy metal in the estuary of Northern Liaodong Bay, China[J]. Acta Scientiae Circumstantiae, 40(8): 3028-3039. | |
[37] | 杨彦, 陆晓松, 李定龙, 2014. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 31(4): 357-363. |
YANG Y, LU X S, LI D L, 2014. Research progress of environmental health risk assessment in China[J]. Journal of Environmental Health, 31(4): 357-363. | |
[38] | 曾法强, 楼国权, 2010. 粉煤灰在水和碱溶液中pH值的变化研究[J]. 中外公路, 30(3): 281-284. |
ZENG F Q, LOU G Q, 2010. Study on the change of pH value of fly ash in water and alkali solution[J]. Journal of China & Foreign Highway, 30(3): 281-284. | |
[39] | 张阿龙, 高瑞忠, 张生, 等, 2018. 吉兰泰盐湖盆地土壤铬、汞、砷污染的负荷特征与健康风险评价[J]. 干旱区研究, 35(5): 1057-1067. |
ZHANG A L, GAO R Z, ZHANG S, et al., 2018 Pollution Load Characteristics and Health Risk Assessment of Heavy Metals Cr, Hg and As in the Jilantai Salt Lake Basin[J]. Arid Zone Research, 35(5): 1057-1067. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[5] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[6] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[7] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[8] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[9] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[10] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[11] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[12] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[13] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[14] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[15] | SONG Xiaoshuai, DING Wuquan, LIU Xinmin, LI Tingzhen. Study on the Mechanism of Ion Specificity Effect on the Pore Condition of Purple Soil [J]. Ecology and Environment, 2023, 32(2): 292-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn