Ecology and Environment ›› 2021, Vol. 30 ›› Issue (9): 1896-1902.DOI: 10.16258/j.cnki.1674-5906.2021.09.014
• Research Articles • Previous Articles Next Articles
SHI Hanzhi1,2,3(), LIU Fan4(
), HUANG Yongdong1,2,3, WU Zhichao1,2,3, LI Furong1,2,3, XU Shoujun1,2,3, DENG Tenghaobo1,2,3, WEN Dian1,2,3, WANG Xu1,2,3, WANG Fuhua1,2,3, JIANG Qi1,2,3, DU Ruiying1,2,3,**(
)
Received:
2020-10-28
Online:
2021-09-18
Published:
2021-12-08
Contact:
DU Ruiying
石含之1,2,3(), 刘帆4(
), 黄永东1,2,3, 吴志超1,2,3, 李富荣1,2,3, 徐守俊1,2,3, 邓腾灏博1,2,3, 文典1,2,3, 王旭1,2,3, 王富华1,2,3, 江棋1,2,3, 杜瑞英1,2,3,**(
)
通讯作者:
杜瑞英
作者简介:
石含之(1989年生)女,助理研究员,博士,主要研究方向为土壤组分互作微界面重金属的化学行为。E-mail: 692874887@qq.com第一联系人:*共同第一作者:刘帆(1989年生),女,助理农艺师,硕士,主要研究方向为受污染耕地安全利用推广、示范。E-mail: 3152966937@qq.com
基金资助:
CLC Number:
SHI Hanzhi, LIU Fan, HUANG Yongdong, WU Zhichao, LI Furong, XU Shoujun, DENG Tenghaobo, WEN Dian, WANG Xu, WANG Fuhua, JIANG Qi, DU Ruiying. Effects of Dynamic Change of Dissolved Organic Matter in Soil on Water-Soluble Copper[J]. Ecology and Environment, 2021, 30(9): 1896-1902.
石含之, 刘帆, 黄永东, 吴志超, 李富荣, 徐守俊, 邓腾灏博, 文典, 王旭, 王富华, 江棋, 杜瑞英. 土壤溶解性有机物的动态变化对水溶态铜的影响[J]. 生态环境学报, 2021, 30(9): 1896-1902.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.09.014
土壤性质 Soil properties | 红壤 Red soil | 褐土 Cinnamon soil | 黑土 Black soil |
---|---|---|---|
土壤有机质 SOM/(g∙kg-1) | 6.70±0.58 | 8.44±0.38 | 55.16±2.66 |
阳离子交换量CEC/(cmol∙kg-1) | 6.80±0.16 | 8.74±0.03 | 34.99±0.07 |
pH值 pH (H2O) | 5.97±0.01 | 7.43±0.02 | 5.79±0.00 |
砂粒 Sand/% | 41.42 | 20.72 | 14.04 |
粉粒 Silt/% | 39.75 | 71.14 | 58.70 |
粘粒 Clay/% | 18.83 | 8.14 | 27.26 |
Cu总量 Total Cu/(mg∙kg-1) | 24.5±0.50 | 21.8±0.60 | 28.9±0.97 |
水溶态铜含量 Water-soluble Cu/(mg∙kg-1) | 0.20±0.00 | 0.24±0.01 | 0.11±0.00 |
Table 1 Soil physiochemical properties
土壤性质 Soil properties | 红壤 Red soil | 褐土 Cinnamon soil | 黑土 Black soil |
---|---|---|---|
土壤有机质 SOM/(g∙kg-1) | 6.70±0.58 | 8.44±0.38 | 55.16±2.66 |
阳离子交换量CEC/(cmol∙kg-1) | 6.80±0.16 | 8.74±0.03 | 34.99±0.07 |
pH值 pH (H2O) | 5.97±0.01 | 7.43±0.02 | 5.79±0.00 |
砂粒 Sand/% | 41.42 | 20.72 | 14.04 |
粉粒 Silt/% | 39.75 | 71.14 | 58.70 |
粘粒 Clay/% | 18.83 | 8.14 | 27.26 |
Cu总量 Total Cu/(mg∙kg-1) | 24.5±0.50 | 21.8±0.60 | 28.9±0.97 |
水溶态铜含量 Water-soluble Cu/(mg∙kg-1) | 0.20±0.00 | 0.24±0.01 | 0.11±0.00 |
Fig. 1 Concentration of dissolved organic carbon (DOC) in soils The different lowercase letters indicate significant differences among treatments (P<0.05). The same below
时间(月) Time(month) | 红壤 Red soil | 褐土 Cinnamon soil | 黑土 Black soil | ||||||
---|---|---|---|---|---|---|---|---|---|
对照 CK | 秸秆 RS | 对照 CK | 秸秆 RS | 对照 CK | 秸秆 RS | ||||
A253/A203 | 4 | 0.06±0.00b | 0.60±0.02a | 0.18±0.02b | 0.62±0.02a | 0.15±0.01b | 0.51±0.07a | ||
8 | 0.05±0.00b | 0.48±0.05a | 0.16±0.01b | 0.57±0.00a | 0.12±0.01b | 0.39±0.02a | |||
12 | 0.05±0.00b | 0.34±0.01a | 0.14±0.00b | 0.46±0.02a | 0.11±0.00b | 0.31±0.00a | |||
A240/A420 | 4 | 65.29±1.75a | 17.71±0.02b | 26.35±5.90a | 13.66±0.22b | 33.66±1.10a | 19.68±0.46b | ||
8 | 148.80±20.63a | 20.30±2.25b | 37.16±4.44a | 16.63±0.92b | 44.66±5.23a | 20.80±1.12b | |||
12 | 78.93±15.47a | 24.93±1.75b | 31.70±0.00a | 22.67±0.20b | 44.63±3.29a | 26.22±0.10b | |||
A250/A365 | 4 | 8.05±0.77a | 5.30±0.06b | 5.64±0.25a | 4.44±0.03b | 6.25±0.03a | 5.69±0.11b | ||
8 | 10.12±0.00a | 5.54±0.01b | 6.37±0.18a | 4.58±0.02b | 7.05±0.01a | 5.69±0.02b | |||
12 | 9.27±0.63a | 6.10±0.17b | 6.09±0.00a | 5.11±0.01b | 7.26±0.11a | 6.15±0.03b | |||
A300/A400 | 4 | 9.33±0.38a | 6.56±0.12b | 6.24±0.46a | 5.11±0.06b | 7.21±0.07a | 6.75±0.02b | ||
8 | 15.94±0.86a | 6.33±0.06b | 7.07±0.08a | 5.32±0.09b | 8.27±0.51a | 6.57±0.01b | |||
12 | 9.21±0.38a | 6.41±0.09b | 6.44±0.00a | 5.72±0.01b | 7.81±0.22a | 6.73±0.05b |
Table 2 The UV-VIS characteristics of DOM in soils
时间(月) Time(month) | 红壤 Red soil | 褐土 Cinnamon soil | 黑土 Black soil | ||||||
---|---|---|---|---|---|---|---|---|---|
对照 CK | 秸秆 RS | 对照 CK | 秸秆 RS | 对照 CK | 秸秆 RS | ||||
A253/A203 | 4 | 0.06±0.00b | 0.60±0.02a | 0.18±0.02b | 0.62±0.02a | 0.15±0.01b | 0.51±0.07a | ||
8 | 0.05±0.00b | 0.48±0.05a | 0.16±0.01b | 0.57±0.00a | 0.12±0.01b | 0.39±0.02a | |||
12 | 0.05±0.00b | 0.34±0.01a | 0.14±0.00b | 0.46±0.02a | 0.11±0.00b | 0.31±0.00a | |||
A240/A420 | 4 | 65.29±1.75a | 17.71±0.02b | 26.35±5.90a | 13.66±0.22b | 33.66±1.10a | 19.68±0.46b | ||
8 | 148.80±20.63a | 20.30±2.25b | 37.16±4.44a | 16.63±0.92b | 44.66±5.23a | 20.80±1.12b | |||
12 | 78.93±15.47a | 24.93±1.75b | 31.70±0.00a | 22.67±0.20b | 44.63±3.29a | 26.22±0.10b | |||
A250/A365 | 4 | 8.05±0.77a | 5.30±0.06b | 5.64±0.25a | 4.44±0.03b | 6.25±0.03a | 5.69±0.11b | ||
8 | 10.12±0.00a | 5.54±0.01b | 6.37±0.18a | 4.58±0.02b | 7.05±0.01a | 5.69±0.02b | |||
12 | 9.27±0.63a | 6.10±0.17b | 6.09±0.00a | 5.11±0.01b | 7.26±0.11a | 6.15±0.03b | |||
A300/A400 | 4 | 9.33±0.38a | 6.56±0.12b | 6.24±0.46a | 5.11±0.06b | 7.21±0.07a | 6.75±0.02b | ||
8 | 15.94±0.86a | 6.33±0.06b | 7.07±0.08a | 5.32±0.09b | 8.27±0.51a | 6.57±0.01b | |||
12 | 9.21±0.38a | 6.41±0.09b | 6.44±0.00a | 5.72±0.01b | 7.81±0.22a | 6.73±0.05b |
土壤类型 Soil types | 水溶态Cu WS-Cu | R2 | F值 F value | 影响因素 Factors | 偏相关系数 T value |
---|---|---|---|---|---|
红壤 Red soil | WS-Cu | 0.962 | 127.099*** | DOC | 11.274*** |
褐土 Cinnamon soil | WS-Cu | 0.898 | 45.052** | DOC | 6.712** |
黑土Black soil | WS-Cu | 0.810 | 17.015* | DOC | 4.125* |
Table 3 The factors controlling water-soluble Cu in soils
土壤类型 Soil types | 水溶态Cu WS-Cu | R2 | F值 F value | 影响因素 Factors | 偏相关系数 T value |
---|---|---|---|---|---|
红壤 Red soil | WS-Cu | 0.962 | 127.099*** | DOC | 11.274*** |
褐土 Cinnamon soil | WS-Cu | 0.898 | 45.052** | DOC | 6.712** |
黑土Black soil | WS-Cu | 0.810 | 17.015* | DOC | 4.125* |
[1] |
ALCACIO T, HESTERBERG D, CHOU J, et al., 2011. Molecular scale characteristics of Cu (Ⅱ) bonding in goethite-humate complexes[J]. Geochimca et Cosmochimca Acta, 65(9): 1355-1366.
DOI URL |
[2] |
ANTONIADIS V, LEVIZOU E, SHAHEEN S, et al., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews, 171: 621-645.
DOI URL |
[3] |
BORGGAARD O, HOLM P, STROBELI V, 2019. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review[J]. Geoderma, 343: 235-246.
DOI URL |
[4] |
CHEN L Y, HAN L F, SUN K, et al., 2012. Molecular transformation of dissolved organic carbon of rhizosphere soil induced by flooding and copper pollution[J]. Geoderma, 407: 115563-115571.
DOI URL |
[5] |
CHRISTIANSEN K, BORGGAAD O, HOLM P, et al., 2015. Experimental determinations of soil cupper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils[J]. Environmental Science and Pollution Research, 22: 5283-5292.
DOI URL |
[6] |
CUI Y S, DU X, WENG L P, et al., 2008. Effects of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils[J]. Geoderma, 146(1-2): 370-377.
DOI URL |
[7] |
DILLING J, KAISER K, 2002. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry[J]. Water Research, 36(20): 5037-5044.
DOI URL |
[8] | DORADO J, GONZÁLEZ-VILA F, ZANCADA M, et al., 2003. Pyrolytic descriptors responsive to changes in humic acid characteristics after long-term sustaninable management of dryland farming systems in central Spain[J]. Journal of Analytical&Applied Pyrolysis, 68(16): 299-314. |
[9] |
GAO S J, GAO J S, CAO W D, et al., 2018. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 17(8): 1852-1860.
DOI URL |
[10] | GU B H, SCHMITT J, CHEN Z H, et al., 1995. Adsorption and desorption of different organic matter fraction on iron oxides[J]. Geochim et Cosmoehim Acta, 59(2): 219-229. |
[11] |
HE X S, XI B D, WEI Z M, et al., 2011. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 82(4): 541-548.
DOI URL |
[12] |
KAISER K, ZECH W, 1997. Competitive sorption of dissolved organic matter fractions to soils and related mineral phase[J]. Soil Science Society of America Journal, 61(1): 64-69.
DOI URL |
[13] |
KUZYAKOV Y, 2010. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363-1371.
DOI URL |
[14] |
LI Q, DU H H, CHEN W L, et al., 2018. Aging shapes the distribution of copper in soil aggregate size fractions[J]. Environmental Pollution, 233: 569-576.
DOI URL |
[15] |
LI Q, HU X P, HAO J L. et al., 2020. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF[J]. Chemosphere, 249: 126143-126149.
DOI URL |
[16] |
MEERS E, LESAGE E, LAMSAL S, et al., 2005. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil[J]. International Journal of Phytoremediation, 7(2): 129-142.
DOI URL |
[17] |
VENEGAS A, RIGOL A, VIDAL M, 2016. Changes in heavy metals extractability from contaminated soils remediated with organic waste or biochar[J]. Geoderma, 279: 132-140.
DOI URL |
[18] | SHAHEEN S, RINKLEBE J, 2014. Geochemical fractions of chromium copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany[J]. Geoderma, 228-229: 142-159. |
[19] |
SHAHEEN S, TSADILAS C, NIAZI N, et al., 2018. Impact of biosolid application rates on competitive sorption and distribution coefficients of Cd, Cu, Ni, Pb, and Zn in an Alfisol and Entisol [J]. Process Safety and Environmental protection, 115: 38-48.
DOI URL |
[20] |
SHI H Z, LI Q, HUANG Q Y, et al., 2018. Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils[J]. Environmental Science and Pollution Research, 25: 10771-10781.
DOI URL |
[21] |
STROBELI B W, 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution--a review[J]. Geoderma, 99(3-4): 169-198.
DOI URL |
[22] |
STROBEL B, BORGGAAD O, HANSEN H, et al., 2005. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil[J]. European Journal of Soil Science, 56(2): 189-196.
DOI URL |
[23] |
YANG S, LI Y, SI S S, et al., 2021. Feasibility of a combined solubilization and eluent drainage system to remove Cd and Cu from agricultural soil[J]. Science of the total environment, 807(2): 150733-150742.
DOI URL |
[24] |
ZSOLNAY A, 2003. Dissolved organic matter: Artefacts, definitions, and functions[J]. Geoderma, 113(3-4): 187-209.
DOI URL |
[25] | 白瑛, 1986. 胶体吸附与土壤重金属容量[J]. 农业环境科学学报 (2): 23-27. |
BAI Y, 1986. The colloid sorption and capacity of the heavy metal in soil[J]. Journal of Agro-environment science (2): 23-27. | |
[26] | 常单娜, 曹卫东, 白金顺, 等, 2017. 绿肥对华北潮土土壤可溶性有机物的影响[J]. 光谱学与光谱分析, 37(1): 221-226. |
CHANG D N, CAO W D, BAI J S, et al., 2017. Effects of green manures on soil dissolved organic matter in moisture soil in north china[J]. Spectroscopy and Spectral Analysis, 37(1): 221-226. | |
[27] | 陈同斌, 陈志军, 2002. 水溶性有机质对土壤中镉吸附行为的影响[J]. 应用生态学报, 13(2): 183-186. |
CHEN T B, CHEN Z J, 2002. Cadmium sorption in soil influenced by dissolved organic matter derived from rice straw and sediment[J]. Chinese Journal of Applied Ecology, 13(2): 183-186. | |
[28] | 丛源, 陈岳龙, 杨忠芳, 等, 2009. 北京市农田土壤重金属的化学形态及其对生态系统的潜在危害[J]. 土壤, 41(1): 37-41. |
CONG Y, CHEN Y L, YANG Z F, et al., 2009. Chemical forms of heavy metals in soil and potential hazards to ecosystem in Beijng farmlands[J]. Soils, 41(1): 37-41. | |
[29] | 环境保护部国土资源部, 2014. 全国污染调查公告[R]. |
The Ministry of Environmental protection and The Ministry of Land and Resources, 2014. Report on the national soil contamination survey[R]. | |
[30] | 石含之, 吴志超, 王旭, 等, 2019. 土壤外源镉老化过程中形态变化及影响因素[J]. 江苏农业学报, 35(6): 1360-1367. |
SHI H Z, WU Z C, WANG X, et al., 2019. Changes of chemical forms and influencing factors of soil exogenous cadmium during the aging process[J]. Jiangsu Journal of Agricultural Sciences, 35(6): 1360-1367. | |
[31] | 汤宏, 沈健林, 张杨珠, 等, 2013. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 27(1): 240-246. |
TANG H, SHEN J L, ZHANG Y Z, et al., 2013. The effects of straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic matter, nitrogen in rice paddy field[J]. Journal of Soil and Water Conservation, 27(1): 240-246. | |
[32] | 王育来, 孙即梁, 杨长明, 等, 2013. 河岸带土壤溶解性有机质垂直分布特征及其性质研究[J]. 农业环境科学学报, 32(12): 2413-2421. |
WANG Y L, SUN J L, YANG C M, et al., 2013. Distrubition of dissolved matter and its properties in soils across different riparian zones[J]. Journal of Agro-Environment Science, 32(12): 2413-2421. | |
[33] | 杨新明, 庄涛, 韩磊, 等, 2019. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 38(3): 644-652. |
YANG X M, ZHUANG T, HAN L, et al., 2019. Fraction distrubition and ecological risk assessment of heavy metals in farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmenal Chemistry, 38(3): 644-652. | |
[34] | 祝亮, 伍钧, 周江敏, 等, 2008. 溶解性有机质对Cu在土壤中吸附-解吸行为的影响[J]. 农业环境科学学报, 27(5): 1779-1785. |
ZHU L, WU J, ZHOU J M, et al., 2008. Effects of dissolved organic matter on sorption-desorption behavior of Copper in soil[J]. Journal of Agro-Environment Science, 27(5): 1779-1785. |
[1] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[2] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[3] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[4] | JIANG Jing, DENG Jingling, SHENG Guangyao. A Review of Biochar Aging and Its Impact on the Adsorption of Heavy Metals [J]. Ecology and Environment, 2022, 31(10): 2089-2100. |
[5] | GAO Feng, CHEN Xiaoling, YANG Wenfu, SHI Lijiang, WANG Wenwen. Study on the Absorption Characteristics of Different Types of Water Particles and CDOM in Summer in Taiyuan [J]. Ecology and Environment, 2021, 30(7): 1455-1469. |
[6] | HOU Suxia, LEI Xuyang, ZHANG Hui, DING Shujie, CUI Guangyu. Analysis of the Effect of Temperature on Vermicomposting of Municipal Sludge Based on EEM and PCR-DGGE [J]. Ecology and Environment, 2021, 30(5): 1060-1068. |
[7] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environment, 2021, 30(5): 957-967. |
[8] | MA Feiyang, FAN Tuantuan, SUN Xiaoping, MING Junde, WANG Shitong, ZHANG Yinghao, YAO Xin. DOM Fluorescence Characteristics and Sources in Different Regions of Dongting Lake [J]. Ecology and Environment, 2021, 30(12): 2370-2379. |
[9] | CONG Xin, LI Yao, WANG Yu, ZHENG Li. Adsorption Characterization of Atrazine in Aqueous Medium on Goethite Biochar Composites [J]. Ecology and Environment, 2021, 30(10): 2067-2075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn