Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 1084-1093.DOI: 10.16258/j.cnki.1674-5906.2021.05.022
• Reviews • Previous Articles Next Articles
ZHANG Taiping*(), XIAO Jiahui, HU Fengjie
Received:
2020-12-02
Online:
2021-05-18
Published:
2021-08-06
Contact:
ZHANG Taiping
通讯作者:
张太平
作者简介:
张太平(1967年生),男,副教授,博士,研究方向为生态工程与环境修复。E-mail:lckzhang@scut.edu.cn
基金资助:
CLC Number:
ZHANG Taiping, XIAO Jiahui, HU Fengjie. Research Progress in the Removal of Contaminants from Water by Immobilized Microorganisms Combined with Biochar[J]. Ecology and Environment, 2021, 30(5): 1084-1093.
张太平, 肖嘉慧, 胡凤洁. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 2021, 30(5): 1084-1093.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.022
生物炭固定化颗粒的组成 Composition of biochar immobilized pellets | 生物炭原料 Biochar raw material | 固定化的微生物 Immobilized microorganisms | 固定化方法Immobilization method | 去除对象 Object removed | 文献 References |
---|---|---|---|---|---|
9%聚乙烯醇,1%海藻酸钠,0.8%生物炭/纳米零价铁,50%细胞悬浮液 9% PVA, 1% SA, 0.8% BC/nZVI, 50% cell suspension | 稻壳 Rice hull | 非脱羧勒克菌 Leclercia adecarboxylata | 吸附-包埋法 Adsorption-embedding | 二价铅 Pb(Ⅱ) | Teng et al., |
200 mg生物炭,2%细胞悬浮液 200 mg BC, 2% cell suspension | 小麦秸秆、活性污泥 Activated sludge/wheat straw | 解磷菌(PSB20-3) Phosphate-solubilizing bacteria (PSB20-3) | 吸附法Adsorption | 二价铅 Pb(Ⅱ) | 张杰等, (Zhang et al., |
5 g生物炭,2 mL细胞悬浮液 5 g DBC-700, 2 mL of condensed cell suspension | 水华藻 D. flos-aquae | 奇异变形杆菌 YC801 Proteus mirabilis YC801 | 吸附法Adsorption | 六价铬 Cr(VI) | Huang et al., |
6%海藻酸钠,1.5 g生物炭,5 mL细菌初始浓度 6% SA, 1.5 g biochar and an initial bacterial concentration of 5 mL | 稻草、鸡粪、污泥Rice straw/chicken manure/sewage sludge | 蜡样芽孢杆菌 RC-1 Bacillus cereus RC-1 | 包埋法Embedding | 二价镉 Cd(Ⅱ) | Huang et al., |
10 g生物炭,细菌培养基(9×105 CFU∙mL-1) 10 g biochar, cell suspension (9×105 CFU∙mL-1) | 木材 Eucalyptus leaves | 紫色链霉菌SBP1 Streptomyces violarus strain SBP1 | 吸附法Adsorption | 二价锰 Mn(Ⅱ) | Youngwilai et al., |
8%聚乙烯醇溶液,3%海藻酸钠溶液, 60%的包泥量,适量生物炭 8% PVA, 3% SA, 60% activated sludge, some biochar | 芦苇 Reed | 活性污泥的混合菌 Mixed bacteria from activated sludge | 包埋法Embedding | 氨氮 ammonia-nitrogen | 郑华楠等, (Zheng et al., |
9 g生物炭,2 mL细胞悬浮液 9 g biochar, 2 mL of cell suspension | 核桃壳 Walnut shell | 施氏假单胞菌XL-2 Pseudomonas stutzeri XL-2 | 吸附法Adsorption | 铵 Ammonium | Yu et al., |
0.5 g生物炭,细胞悬浮液(1.5%,v/v) 0.5 g biochar, cell suspension (1.5%, v/v) | 竹材 Bamboo | 副球菌属YF1 Paracoccus sp. YF1 | 吸附法Adsorption | 硝酸盐 Nitrate | Liu et al., |
0.1 g生物炭,35 mL细胞悬浮液 0.1 g biochar, 35 mL of cell suspension | 水稻秸秆 Rice straw | 黄假单胞菌WD-3 Seudomonas flava WD-3 | 吸附法Adsorption | 污水 Sewage | 唐美珍等, (Tang et al., |
1 g四氧化三铁/生物炭,1 g细胞(湿重) 1 g Fe3O4/biochar, 1 g cell (wet weight) | 麦秸 Wheat straw | 荚膜红细菌(PSB) Rhodobacter capsulatus (PSB) | 吸附法Adsorption | 废水 Wastewater | He et al., |
生物炭或木屑与细胞悬浮液比例5꞉100(W/V) The biochar/wood chips and cell suspension were mixed in 5꞉100 (W/V) ratios. | 木屑 Wood chips | 可变棒状杆菌HRJ4 Corynebacterium variabile HRJ4 | 吸附法Adsorption | 石油烃 Petroleum hydrocarbon | Zhang et al., |
细胞悬浮液(1.5%,v/v),0.5 g生物炭 cell suspension (1.5%, v/v), 0.5 g biochar | 竹材 Bamboo | 威尼斯不动杆菌 Acinetobacter venetianus | 吸附法Adsorption | 柴油 Diesel oil | Chen et al., |
0.05 g膨胀石墨或0.5 g膨胀珍珠岩或0.5 g竹炭,1 mL细菌储备液 0.05 g expanded graphite/expanded perlite/bamboo charcoal, 1 mL of bacterial stock solution | 竹材 Bamboo | ODB-1(假单胞菌属),ODB-2/ODB-3(短波单胞菌属) ODB-1 (Pseudomonas sp.), ODB-2/ODB-3 (Brevundimonas sp.) | 吸附法Adsorption | 柴油 Diesel oil | Wang et al., |
0.1 g生物炭,2 mL细胞悬浮液 0.1 g biochar, 2 mL of cell suspension | 玉米秸秆 Maize straw | 鞘氨醇单胞菌DZ3 Sphingomonas sp. DZ3 | 吸附法Adsorption | 4-溴联苯醚4-bromodiphengl ether | Du et al., |
50 g的9%聚乙烯醇溶液, 10 mL细菌菌株,65 g竹炭粉 50 g of 9% PVA gel solution, 10 mL of bacterial strain, 65 g of bamboo-biochar powder | 竹材 Bamboo | 假单胞菌YATO411, 香茅醇假单胞菌YAIP521 Pseudomonas sp. YATO411, Pseudomonas citronellolis YAIP521 | 包埋法Embedding | 甲苯和丙酮Toluene and acetone | Liu et al., |
0.05 g生物炭,3 mL浓缩细胞悬浮液 0.05 g biochar, 3 mL of condensed cell suspension | 木材和竹材 Wood and bamboo | 由沉积物中富集培养的降解菌Degrading bacteria enriched by sediments | 吸附法Adsorption | 壬基酚Nonylphenol | Lou et al., |
5.0 g四氧化三铁/生物炭,细胞悬浮液(10%,v/v) 5.0 g Fe3O4/biochar, cell suspension (10%, v/v) | 竹材 Bamboo | 链霉菌属N01 Streptomyces sp. N01 | 吸附法Adsorption | 喹啉 Quinoline | Zhuang et al., |
Table 1 Application of biochar immobilized microorganism technology in water
生物炭固定化颗粒的组成 Composition of biochar immobilized pellets | 生物炭原料 Biochar raw material | 固定化的微生物 Immobilized microorganisms | 固定化方法Immobilization method | 去除对象 Object removed | 文献 References |
---|---|---|---|---|---|
9%聚乙烯醇,1%海藻酸钠,0.8%生物炭/纳米零价铁,50%细胞悬浮液 9% PVA, 1% SA, 0.8% BC/nZVI, 50% cell suspension | 稻壳 Rice hull | 非脱羧勒克菌 Leclercia adecarboxylata | 吸附-包埋法 Adsorption-embedding | 二价铅 Pb(Ⅱ) | Teng et al., |
200 mg生物炭,2%细胞悬浮液 200 mg BC, 2% cell suspension | 小麦秸秆、活性污泥 Activated sludge/wheat straw | 解磷菌(PSB20-3) Phosphate-solubilizing bacteria (PSB20-3) | 吸附法Adsorption | 二价铅 Pb(Ⅱ) | 张杰等, (Zhang et al., |
5 g生物炭,2 mL细胞悬浮液 5 g DBC-700, 2 mL of condensed cell suspension | 水华藻 D. flos-aquae | 奇异变形杆菌 YC801 Proteus mirabilis YC801 | 吸附法Adsorption | 六价铬 Cr(VI) | Huang et al., |
6%海藻酸钠,1.5 g生物炭,5 mL细菌初始浓度 6% SA, 1.5 g biochar and an initial bacterial concentration of 5 mL | 稻草、鸡粪、污泥Rice straw/chicken manure/sewage sludge | 蜡样芽孢杆菌 RC-1 Bacillus cereus RC-1 | 包埋法Embedding | 二价镉 Cd(Ⅱ) | Huang et al., |
10 g生物炭,细菌培养基(9×105 CFU∙mL-1) 10 g biochar, cell suspension (9×105 CFU∙mL-1) | 木材 Eucalyptus leaves | 紫色链霉菌SBP1 Streptomyces violarus strain SBP1 | 吸附法Adsorption | 二价锰 Mn(Ⅱ) | Youngwilai et al., |
8%聚乙烯醇溶液,3%海藻酸钠溶液, 60%的包泥量,适量生物炭 8% PVA, 3% SA, 60% activated sludge, some biochar | 芦苇 Reed | 活性污泥的混合菌 Mixed bacteria from activated sludge | 包埋法Embedding | 氨氮 ammonia-nitrogen | 郑华楠等, (Zheng et al., |
9 g生物炭,2 mL细胞悬浮液 9 g biochar, 2 mL of cell suspension | 核桃壳 Walnut shell | 施氏假单胞菌XL-2 Pseudomonas stutzeri XL-2 | 吸附法Adsorption | 铵 Ammonium | Yu et al., |
0.5 g生物炭,细胞悬浮液(1.5%,v/v) 0.5 g biochar, cell suspension (1.5%, v/v) | 竹材 Bamboo | 副球菌属YF1 Paracoccus sp. YF1 | 吸附法Adsorption | 硝酸盐 Nitrate | Liu et al., |
0.1 g生物炭,35 mL细胞悬浮液 0.1 g biochar, 35 mL of cell suspension | 水稻秸秆 Rice straw | 黄假单胞菌WD-3 Seudomonas flava WD-3 | 吸附法Adsorption | 污水 Sewage | 唐美珍等, (Tang et al., |
1 g四氧化三铁/生物炭,1 g细胞(湿重) 1 g Fe3O4/biochar, 1 g cell (wet weight) | 麦秸 Wheat straw | 荚膜红细菌(PSB) Rhodobacter capsulatus (PSB) | 吸附法Adsorption | 废水 Wastewater | He et al., |
生物炭或木屑与细胞悬浮液比例5꞉100(W/V) The biochar/wood chips and cell suspension were mixed in 5꞉100 (W/V) ratios. | 木屑 Wood chips | 可变棒状杆菌HRJ4 Corynebacterium variabile HRJ4 | 吸附法Adsorption | 石油烃 Petroleum hydrocarbon | Zhang et al., |
细胞悬浮液(1.5%,v/v),0.5 g生物炭 cell suspension (1.5%, v/v), 0.5 g biochar | 竹材 Bamboo | 威尼斯不动杆菌 Acinetobacter venetianus | 吸附法Adsorption | 柴油 Diesel oil | Chen et al., |
0.05 g膨胀石墨或0.5 g膨胀珍珠岩或0.5 g竹炭,1 mL细菌储备液 0.05 g expanded graphite/expanded perlite/bamboo charcoal, 1 mL of bacterial stock solution | 竹材 Bamboo | ODB-1(假单胞菌属),ODB-2/ODB-3(短波单胞菌属) ODB-1 (Pseudomonas sp.), ODB-2/ODB-3 (Brevundimonas sp.) | 吸附法Adsorption | 柴油 Diesel oil | Wang et al., |
0.1 g生物炭,2 mL细胞悬浮液 0.1 g biochar, 2 mL of cell suspension | 玉米秸秆 Maize straw | 鞘氨醇单胞菌DZ3 Sphingomonas sp. DZ3 | 吸附法Adsorption | 4-溴联苯醚4-bromodiphengl ether | Du et al., |
50 g的9%聚乙烯醇溶液, 10 mL细菌菌株,65 g竹炭粉 50 g of 9% PVA gel solution, 10 mL of bacterial strain, 65 g of bamboo-biochar powder | 竹材 Bamboo | 假单胞菌YATO411, 香茅醇假单胞菌YAIP521 Pseudomonas sp. YATO411, Pseudomonas citronellolis YAIP521 | 包埋法Embedding | 甲苯和丙酮Toluene and acetone | Liu et al., |
0.05 g生物炭,3 mL浓缩细胞悬浮液 0.05 g biochar, 3 mL of condensed cell suspension | 木材和竹材 Wood and bamboo | 由沉积物中富集培养的降解菌Degrading bacteria enriched by sediments | 吸附法Adsorption | 壬基酚Nonylphenol | Lou et al., |
5.0 g四氧化三铁/生物炭,细胞悬浮液(10%,v/v) 5.0 g Fe3O4/biochar, cell suspension (10%, v/v) | 竹材 Bamboo | 链霉菌属N01 Streptomyces sp. N01 | 吸附法Adsorption | 喹啉 Quinoline | Zhuang et al., |
影响因素 Influence factors | 主要影响对象 Main Influenced Objects | 影响效果 Impact effect | 参考文献 References |
---|---|---|---|
污染物的 初始浓度 The initial concentration of the pollutant | 微生物的活性、颗粒的活性位点 Microbial activity, active site of particles | 颗粒的污染物去除能力先随着其初始浓度的增加而提高,当浓度过高后会抑制微生物生长以及颗粒存在很少的结合位点,从而降低污染物的去除效果 The pollutant removal ability of particles first increases with the increase of its initial concentration. When the concentration is too high, the growth of microorganisms will be inhibited and the particles have few binding sites, thus reducing the removal effect of pollutants | Abdel-Fattah et al., Chen et al., 陈楸健等, (Chen et al., Du et al., Huang et al., Huang et al., Lin et al., Liu et al., Lu et al., Tan et al., 唐美珍等, (Tang et al., Teng et al., Youngwilai et al., Yu et al., Zhuang et al., |
pH | 微生物的活性、溶液电离的可能性、污染物的化学形态、颗粒的活性位 点、生物炭的表面官能团的行为 Microbial activity, possibility of ionization of solution, chemical morphology of contaminants, active sites of particles, behavior of surface functional groups of biochar | pH过高或过低均影响微生物的活性;生物炭在低pH下表面带正电,在溶液偏中性和碱性下带负电,有利于吸附阳离子污染物 Too high or too low pH will affect the activity of microorganisms. The surface of biochar is positively charged at low pH, and negatively charged at neutral and alkaline solutions, which is conducive to the adsorption of cationic pollutants | |
温度 Temperature | 微生物的活性、氧溶解度、生物炭的吸附容量 Microbial activity, oxygen solubility, adsorption capacity of biochar | 温度过高或过低均影响微生物的活性;较高的温度会降低氧溶解度而对微生物的活性有负面影响;生物炭的吸附容量随着温度的升高而增加 Too high or too low temperature will affect the activity of microorganisms. A higher temperature will reduce the oxygen solubility and have a negative impact on the activity of microorganisms. The adsorption capacity of biochar increases with the increase of temperature | |
时间 Time | 生物炭固定化微生物颗粒的吸附过程(主要是生物炭的吸附) Adsorption process of biochar immobilized microorganism particles (mainly biochar adsorption) | 在吸附初期,固定化微生物颗粒对污染物的吸附速率较快, 但随时间的延长逐渐达到平衡 At the initial stage of adsorption, the adsorption rate of immobilized microorganism particles to pollutants is faster, but gradually reaches equilibrium with time | |
投加量 Dosage | 颗粒的活性位点总量 Total number of active sites of particles | 颗粒的活性位点总量的随着使用投加量的增加 而增多同时提高污染物去除效果 The total number of active sites of particles increases with the increase of dosage and the removal effect of pollutants is also improved |
Table 2 Analysis of environmental influencing factors for the removal of pollutants by biochar immobilized microorganisms
影响因素 Influence factors | 主要影响对象 Main Influenced Objects | 影响效果 Impact effect | 参考文献 References |
---|---|---|---|
污染物的 初始浓度 The initial concentration of the pollutant | 微生物的活性、颗粒的活性位点 Microbial activity, active site of particles | 颗粒的污染物去除能力先随着其初始浓度的增加而提高,当浓度过高后会抑制微生物生长以及颗粒存在很少的结合位点,从而降低污染物的去除效果 The pollutant removal ability of particles first increases with the increase of its initial concentration. When the concentration is too high, the growth of microorganisms will be inhibited and the particles have few binding sites, thus reducing the removal effect of pollutants | Abdel-Fattah et al., Chen et al., 陈楸健等, (Chen et al., Du et al., Huang et al., Huang et al., Lin et al., Liu et al., Lu et al., Tan et al., 唐美珍等, (Tang et al., Teng et al., Youngwilai et al., Yu et al., Zhuang et al., |
pH | 微生物的活性、溶液电离的可能性、污染物的化学形态、颗粒的活性位 点、生物炭的表面官能团的行为 Microbial activity, possibility of ionization of solution, chemical morphology of contaminants, active sites of particles, behavior of surface functional groups of biochar | pH过高或过低均影响微生物的活性;生物炭在低pH下表面带正电,在溶液偏中性和碱性下带负电,有利于吸附阳离子污染物 Too high or too low pH will affect the activity of microorganisms. The surface of biochar is positively charged at low pH, and negatively charged at neutral and alkaline solutions, which is conducive to the adsorption of cationic pollutants | |
温度 Temperature | 微生物的活性、氧溶解度、生物炭的吸附容量 Microbial activity, oxygen solubility, adsorption capacity of biochar | 温度过高或过低均影响微生物的活性;较高的温度会降低氧溶解度而对微生物的活性有负面影响;生物炭的吸附容量随着温度的升高而增加 Too high or too low temperature will affect the activity of microorganisms. A higher temperature will reduce the oxygen solubility and have a negative impact on the activity of microorganisms. The adsorption capacity of biochar increases with the increase of temperature | |
时间 Time | 生物炭固定化微生物颗粒的吸附过程(主要是生物炭的吸附) Adsorption process of biochar immobilized microorganism particles (mainly biochar adsorption) | 在吸附初期,固定化微生物颗粒对污染物的吸附速率较快, 但随时间的延长逐渐达到平衡 At the initial stage of adsorption, the adsorption rate of immobilized microorganism particles to pollutants is faster, but gradually reaches equilibrium with time | |
投加量 Dosage | 颗粒的活性位点总量 Total number of active sites of particles | 颗粒的活性位点总量的随着使用投加量的增加 而增多同时提高污染物去除效果 The total number of active sites of particles increases with the increase of dosage and the removal effect of pollutants is also improved |
[1] | ABDEL-FATTAH T M, MAHMOUD M E, AHMED S B, et al., 2015. Biochar from woody biomass for removing metal contaminants and carbon sequestration[J]. Journal of Industrial and Engineering Chemistry (Seoul, Korea), 22: 103-109. |
[2] |
AKOLGO G A, ESSANDOH E O, GYAMFI S, et al., 2018. The potential of a dual purpose improved cookstove for low income earners in Ghana - Improved cooking methods and biochar production[J]. Renewable and Sustainable Energy Reviews, 82(Part 1): 369-379.
DOI URL |
[3] | AMIN M, CHETPATTANANONDH P, 2019. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II) [J]. Bioresource Technology, 289: 121578. |
[4] | BILAL M, ZHAO Y P, RASHEED T, et al., 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review[J]. International Journal of Biological Macromolecules, 120(Part B): 2530-2544. |
[5] |
CASTORENA G, ACUÑA M E, ABURTO J, et al., 2008. Semi-continuous biodegradation of carbazole in fuels by biofilm-immobilised cells ofBurkholderia sp. strain IMP5GC[J]. Process Biochemistry, 43(11): 1318-1321.
DOI URL |
[6] |
CHANDRAN P, DAS N, 2011. Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels[J]. Biodegradation, 22(6): 1181-1189.
DOI URL |
[7] |
CHEN D Z, FANG J Y, SHAO Q, et al., 2013. Biodegradation of tetrahydrofuran byPseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: Mass transfer effect and continuous treatment[J]. Bioresource Technology, 139: 87-93.
DOI URL |
[8] |
CHEN Y, YU B, LIN J J, et al., 2016. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilizedAcinetobacter venetianus on porous material[J]. Chemical Engineering Journal, 289: 463-470.
DOI URL |
[9] |
DASH R R, BALOMAJUMDER C, KUMAR A, 2008. Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB)[J]. Journal of Hazardous Materials, 152(1): 387-396.
DOI URL |
[10] |
DATTA S, DATTA S, CHRISTENA L R, et al., 2013. Enzyme immobilization: an overview on techniques and support materials[J]. 3 Biotech, 3(1): 1-9.
DOI URL |
[11] | DENG F C, LIAO C J, YANG C, et al., 2016. Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials[J]. International Biodeterioration & Biodegradation, 110: 46-52. |
[12] |
DU J T, SUN P F, FENG Z, et al., 2016. The biosorption capacity of biochar for 4-bromodiphengl ether: Study of its kinetics, mechanism, and use as a carrier for immobilized bacteria[J]. Environmental Science and Pollution Research, 23(4): 3770-3780.
DOI URL |
[13] |
FRANKEL M L, BHUIYAN T I, VEKSHA A, et al., 2016. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals[J]. Bioresource Technology, 216: 352-361.
DOI URL |
[14] | GIRIJAN S, KUMAR M, 2019. Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation[J]. Current Opinion in Environmental Science & Health, 12: 18-29. |
[15] |
HATTORI T, FURUSAKA C, 1959. Chemical activities ofEscherichia coli adsorbed on a resin[J]. Biochimica et Biophysica Acta, 31(2): 581-582.
PMID |
[16] |
HE S Y, ZHONG L H, DUAN J J, et al., 2017. Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria[J]. Frontiers in microbiology, DOI:10.3389/fmicb.2017.00823.
DOI |
[17] |
HUANG F, LI K, WU R R, et al., 2020a. Insight into the Cd2+ biosorption by viableBacillus cereus RC-1 immobilized on different biochars: roles of bacterial cell and biochar matrix[J]. Journal of Cleaner Production, 272: 122743.
DOI URL |
[18] |
HUANG S W, CHEN X, WANG D D, et al., 2020b. Bio-reduction and synchronous removal of hexavalent chromium from aqueous solutions using novel microbial cell/algal-derived biochar particles: Turning an environmental problem into an opportunity[J]. Bioresource Technology, 309: 123304.
DOI URL |
[19] |
JÓŹWIAK T, FILIPKOWSKA U, SZYMCZYK P, et al., 2017. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye[J]. Reactive and Functional Polymers, 114: 58-74.
DOI URL |
[20] |
LI Q Y, LU H, YIN Y X, et al., 2019. Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilizedAlcaligenes sp. strain DN25[J]. Journal of Hazardous Materials, 364: 367-375.
DOI URL |
[21] |
LI Z W, ZHANG X X, XIONG X, et al., 2017. Determination of the best conditions for modified biochar immobilized petroleum hydrocarbon degradation microorganism by orthogonal test[J]. IOP Conference Series: Earth and Environmental Science, 94: 12191.
DOI URL |
[22] |
LIN C, GAN L, CHEN Z L, 2010. Biodegradation of naphthalene by strainBacillus fusiformis (BFN)[J]. Journal of Hazardous Materials, 182(1-3): 771-777.
DOI URL |
[23] | LIU S H, LIN H H, LAI C Y, et al., 2019. Microbial community in a pilot-scale biotrickling filter with cell-immobilized biochar beads and its performance in treating toluene-contaminated waste gases[J]. International Biodeterioration & Biodegradation, 144: 104743. |
[24] |
LIU W J, JIANG H, YU H Q, 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material[J]. Chemical Reviews, 115(22): 12251-12285.
DOI URL |
[25] |
LIU Y J, ZHANG A N, WANG X C, 2009. Biodegradation of phenol by using free and immobilized cells ofAcinetobacter sp. XA05 andSphingomonas sp. FG 03[J]. Biochemical Engineering Journal, 44(2-3): 187-192.
DOI URL |
[26] | LIU Y, GAN L, CHEN Z L, et al., 2012. Removal of nitrate usingParacoccus sp. YF 1 immobilized on bamboo carbon[J]. Journal of Hazardous Materials, 229-230: 419-425. |
[27] |
LOU L P, HUANG Q, LOU Y L, et al., 2019. Adsorption and degradation in the removal of nonylphenol fromwater by cells immobilized on biochar[J]. Chemosphere, 228: 676-684.
DOI URL |
[28] |
LU H L, ZHANG W H, YANG Y X, et al., 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 46(3): 854-862.
DOI URL |
[29] |
MA X S, LI N J, JIANG J, et al., 2013. Adsorption-synergic biodegradation of high-concentrated phenolic water byPseudomonas putida immobilized on activated carbon fiber[J]. Journal of Environmental Chemical Engineering, 1(3): 466-472.
DOI URL |
[30] |
MANYÀ J J, 2012. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs[J]. Environmental Science & Technology, 46(15): 7939-7954.
DOI URL |
[31] | MARRIS E, 2006. Putting the carbon back: Black is the new green[J]. Nature, 422(7103): 624-626. |
[32] |
MARTÍN M, MENGS G, PLAZA E, et al., 2000. Propachlor Removal byPseudomonas Strain GCH1 in an Immobilized-Cell System[J]. Applied and Environmental Microbiology, 66(3): 1190-1194.
DOI URL |
[33] |
NG Y L, YAN R, CHEN X G, et al., 2004. Use of activated carbon as a support medium for H2S biofiltration and effect of bacterial immobilization on available pore surface[J]. Applied Microbiology and Biotechnology, 66(3): 259-265.
DOI URL |
[34] |
OH S Y, SEO Y D, KIM B, et al., 2016. Microbial reduction of nitrate in the presence of zero-valent iron and biochar[J]. Bioresource Technology, 200: 891-896.
DOI URL |
[35] |
PANDEY D, DAVEREY A, ARUNACHALAM K, 2020. Biochar: Production, properties and emerging role as a support for enzyme immobilization[J]. Journal of Cleaner Production, 255: 120267.
DOI URL |
[36] | PARKHURST J D, DRYDEN F D, MCDERMOTT G N, et al., 1967. Pomona Activated Carbon Pilot Plant[J]. Journal-Water Pollution Control Federation, 39(10): R70-R81. |
[37] |
QIAO K L, TIAN W J, BAI J, et al., 2020. Removal of high-molecular- weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads[J]. Marine Pollution Bulletin, 159: 111489.
DOI URL |
[38] |
QIAO L, WEN D H, WANG J L, 2010. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 101(14): 5229-5234.
DOI URL |
[39] |
SARMA S J, PAKSHIRAJAN K, 2010. An Immobilized Cell System for Biodegradation of Pyrene by Mycobacterium Frederiksbergense[J]. Polycyclic Aromatic Compounds, 30(3): 129-140.
DOI URL |
[40] |
SCHNEE L S, KNAUTH S, HAPCA S, et al., 2016. Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat[J]. Plant and Soil, 408(1/-2): 357-368.
DOI URL |
[41] |
SCHWEDE S, BRUCHMANN F, THORIN E, et al., 2017. Biological syngas methanation via immobilized methanogenic archaea on biochar[J]. Energy Procedia, 105: 823-829.
DOI URL |
[42] | SONG J, NAMGUNG H, AHMED Z, 2012. Biodegradation of toluene usingCandida tropicalis immobilized on polymer matrices in fluidized bed bioreactors[J]. Journal of Hazardous Materials, 241-242: 316-322. |
[43] |
SUN T, MIAO J B, SALEEM M, et al., 2020. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning[J]. Journal of Hazardous Materials, 398: 122941.
DOI URL |
[44] |
TAN X F, LIU Y G, ZENG G M, et al., 2015. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 125: 70-85.
DOI URL |
[45] |
TENG Z D, SHAO W, ZHANG K Y, et al., 2020. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/nanoscale zero valent iron composite[J]. Journal of Hazardous Materials, 384: 121505.
DOI URL |
[46] |
TING A S Y, RAHMAN N H A, ISA M I H M, et al., 2013. Investigating metal removal potential by Effective Microorganisms (EM) in alginate-immobilized and free-cell forms[J]. Bioresource Technology, 147: 636-639.
DOI URL |
[47] |
WAHLA A Q, ANWAR S, MUELLER J A, et al., 2020. Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure[J]. Journal of Hazardous Materials, 390: 121493.
DOI URL |
[48] |
WANG B, XU X Y, YAO X W, et al., 2019. Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate- immobilizedSphingomonas pseudosanguinis andPseudomonas stutzeri bacteria[J]. Journal of Environmental Management, 249: 109388.
DOI URL |
[49] |
WANG G J, LI Q, GAO X, et al., 2018. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J]. Bioresource Technology, 250: 812-820.
DOI URL |
[50] |
WANG X, WANG X J, LIU M, et al., 2015. Adsorption-synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials[J]. Marine Pollution Bulletin, 92(1-2): 195-200.
DOI URL |
[51] |
WU J W, DONG L L, ZHOU C S, et al., 2019. Enhanced butanol- hydrogen coproduction byClostridium beijerinckii with biochar as cell’s carrier[J]. Bioresource Technology, 294: 122141.
DOI URL |
[52] |
XIAO X, CHEN B L, CHEN Z M, et al., 2018. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review[J]. Environmental Science & Technology, 52(9): 5027-5047.
DOI URL |
[53] |
YANG H J, YANG Z M, XU X H, et al., 2020. Increasing the methane production rate of hydrogenotrophic methanogens using biochar as a biocarrier[J]. Bioresource Technology, 302: 122829.
DOI URL |
[54] |
YOUNGWILAI A, KIDKHUNTHOD P, JEARANAIKOON N, 2020. Simultaneous manganese adsorption and biotransformation byStreptomyces violarus strain SBP1 cell-immobilized biochar[J]. Science of the Total Environment, 713: 136708.
DOI URL |
[55] |
YU Y, AN Q, ZHOU Y, et al., 2019. Highly synergistic effects on ammonium removal by the co-system ofPseudomonas stutzeri XL-2 and modified walnut shell biochar[J]. Bioresource Technology, 280: 239-246.
DOI URL |
[56] |
ZHANG B F, ZHANG L, ZHANG X X, 2019. Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar[J]. RSC advances, 9(60): 35304-35311.
DOI URL |
[57] |
ZHANG H R, TANG J C, WANG L, et al., 2016. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerantCorynebacterium variabile HRJ4 and biochar[J]. Journal of Environmental Sciences, 47(9): 7-13.
DOI URL |
[58] |
ZHUANG H F, HAN H J, XU P, et al., 2015. Biodegradation of quinoline byStreptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles[J]. Biochemical Engineering Journal, 99: 44-47.
DOI URL |
[59] | 陈楸健, 周玲, 梁媛, 2021. 生物炭固定微生物对草甘膦的去除效果研究[J]. 环境污染与防治, 43(1): 36-41. |
CHEN Q J, ZHOU L, LIANG Y, 2021. Removal effect of glyphosate by microorganisms-immobilized biochar[J]. Environmental Pollution & Control, 43(1): 36-41. | |
[60] | 陈永焦, 2010. 浅谈我国水污染现状及治理对策[J]. 科技信息 (11): 797-798. |
CHEN Y J, 2010. Investigation of our Country’s Current Water Pollution Situation and the Countermeasures[J]. Science & Technology Information (11): 797-798. | |
[61] | 程扬, 刘子丹, 沈启斌, 等, 2018. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报, 27(10): 1870-1877. |
CHENG Y, LIU Z D, SHEN Q B, et al., 2018. The Impact of Straw Biochar on Corn Rhizospheric and Non-rhizospheric Soil Microbial Community Structure[J]. Ecology and Environmental Sciences, 27(10): 1870-1877. | |
[62] | 黄真真, 陈桂秋, 曾光明, 等, 2015. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治, 37(10): 77-85. |
HUANG Z Z, CHEN G Q, ZENG G M, et al., 2015. Research progress of immobilized microorganism technology and its mechanisms in wastewater treatment[J]. Environmental Pollution & Control, 37(10): 77-85. | |
[63] | 居乃琥, 2011. 酶工程手册[M]. 北京: 中国轻工业出版社. |
JU N H, 2011. Handbook of Enzyme Engineering[M]. Beijing: China Light Industry Press. | |
[64] | 刘玉玲, 朱虎成, 彭鸥, 等, 2020. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 41(9): 4322-4332. |
LIU Y L, ZHU H C, PENG O, et al., 2020. Adsorption of Cadmium and Arsenic by Corn Stalk Biochar Solidified Microorganism[J]. Environmental Science, 41(9): 4322-4332. | |
[65] | 齐丹, 胡劲召, 卢徐节, 等, 2016. 复合型固定化微生物载体的选择及其养殖废水脱氮性能研究[J]. 海南热带海洋学院学报, 23(5): 23-27. |
QI D, HU J Z, LU X J, et al., 2016. Selection of Composite Immobilized Carrier and its Performance of Denitrification for Aquaculture Wastewater[J]. Journal of Hainan Tropical Ocean University, 23(5): 23-27. | |
[66] | 唐美珍, 汪文飞, 李如如, 等, 2017. 生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J]. 环境科学学报, 37(9): 3441-3448. |
TANG M Z, WANG W F, LI R R, et al., 2017. ImmobilizedPseudomonas flava WD-3 by biochar for the sewage purification in the artificial wetland[J]. Acta Scientiae Circumstantiae, 37(9): 3441-3448. | |
[67] | 王俊峰, 王萍萍, 刘志健, 2014. 不动杆菌Acinetobacter sp. NG3固定化处理抗生素制药废水的研究[J]. 安徽农业科学, 42(35): 12633-12634. |
WANG J F, WANG P P, LIU Z J, 2014. Treatment of antibiotic wastewater by immobilized acinetobacter sp. NG3[J]. Journal of Anhui Agricultural Sciences, 42(35): 12633-12634. | |
[68] | 王里奥, 崔志强, 钱宗琴, 等, 2004. 微生物固定化的发展及在废水处理中的应用[J]. 重庆大学学报, 27(3): 125-129. |
WANG L A, CUI Z Q, QIAN Z Q, et al., 2004. Advances in immobilized microorganism an its applications of wastewater treatment[J]. Journal of Chongqing University, 27(3): 125-129. | |
[69] | 王向前, 胡学玉, 陈窈君, 等, 2016. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 34(12): 32-37. |
WANG X Q, HU X Y, CHEN Y J, et al., 2016. Effect of biochar and modified biochar on the adsorption and immobilization of heavy metals in water environment[J]. Environmental Engineering, 34(12): 32-37. | |
[70] | 徐家伊, 胡朝月, 杨雅晗, 等, 2019. 生物炭对水溶液中四环素的吸附效果研究[J]. 高师理科学刊, 39(5): 43-46, 71. |
XU J Y, HU Z Y, YANG Y H, et al., 2019. Study on the adsorption effect of tetracycline on biochar in aqueous solution[J]. Journal of Science of Teachers' College and University, 39(5): 43-46, 71. | |
[71] | 张杰, 朱晓丽, 尚小清, 等, 2019. 生物炭固定化解磷菌对Pb2+的吸附特性[J]. 环境污染与防治, 41(4): 387-392. |
ZHANG J, ZHU X L, SHANG X Q, et al., 2019. Adsorption characteristics of Pb2+ on biochar immobilized phosphate- solubilizing bacteria[J]. Environmental Pollution & Control, 41(4): 387-392. | |
[72] | 张娱, 陈琦, 唐志书, 等, 2019. 玉米芯生物炭对苯酚的吸附特性研究[J]. 合成纤维工业, 42(1): 17-19. |
ZHANG Y, CEHN Q, TANG Z S, et al., 2019. Adsorption characteristics of corncob biochar for phenol[J]. China Synthetic Fiber Industry, 42(1): 17-19. | |
[73] | 郑华楠, 宋晴, 朱义, 等, 2019. 芦苇生物炭复合载体固定化微生物去除水中氨氮[J]. 环境工程学报, 13(2): 310-318. |
ZHENG H N, SONG Q, ZHU Y, et al., 2019. Removing ammonia nitrogen from wastewater by immobilized microorganism with reed biochar composite carrier[J]. Chinese Journal of Environmental Engineering, 13(2): 310-318. | |
[74] | 郑建永, 李天一, 张伟, 等, 2017. 聚乙烯亚胺/戊二醛交联法固定化重组酯酶大肠杆菌细胞[J]. 生物加工过程, 15(3): 7-11. |
ZHENG J Y, LI T Y, ZHANG W, et al., 2017. Immobilization of recombinant esteraseEscherichia coli cells by cross-linking with polyethyleneimine-glutaradehyde[J]. Chinese Journal of Bioprocess Engineering, 15(3): 7-11. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[3] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[4] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[5] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[6] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[7] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[8] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[9] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[10] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[11] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[12] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[13] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[14] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[15] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn