Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2380-2386.DOI: 10.16258/j.cnki.1674-5906.2021.12.013
• Research Articles • Previous Articles Next Articles
WANG Yazhuo1,2,5(), ZHOU Xiang3, XIU Lei4, SHAN Rui1,2,*(
), YUAN Haoran1,2
Received:
2021-08-04
Online:
2021-12-18
Published:
2022-01-04
Contact:
SHAN Rui
王亚琢1,2,5(), 周翔3, 修磊4, 单锐1,2,*(
), 袁浩然1,2
通讯作者:
单锐
作者简介:
王亚琢(1985年生),男,高级工程师,博士研究生,主要研究方向为有机固废资源化利用。E-mail: wangyz@ms.giec.ac.cn
基金资助:
CLC Number:
WANG Yazhuo, ZHOU Xiang, XIU Lei, SHAN Rui, YUAN Haoran. Preparation of K2FeO4 Modified Biochar and Its Adsorption Characteristics for Cd(Ⅱ) in Aqueous Solution[J]. Ecology and Environment, 2021, 30(12): 2380-2386.
王亚琢, 周翔, 修磊, 单锐, 袁浩然. 高铁酸钾改性生物炭的制备及其对水体中Cd(Ⅱ)的吸附特性[J]. 生态环境学报, 2021, 30(12): 2380-2386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.013
吸附等温线参数 Adsorption isotherms parameters | 吸附动力学参数 Adsorption kinetic model parameters | |||
---|---|---|---|---|
Freundlich 模型 | Langmuir 模型 | 拟一级吸附 动力学 | 拟二级吸附 动力学 | |
KF=26.2909 mg∙g-1 nF=0.3254 r2=0.8935 | qmax=183.1970 mg∙g-1 KL=0.0221 L∙g-1 r2=0.9858 | qe=153.7083 mg∙g-1 k1=0.0555 r2=0.9701 | qe=174.4224 mg∙g-1 k2=1.8056 r2=0.9962 |
Table1 Adsorption isotherms and adsorption kinetic model parameters
吸附等温线参数 Adsorption isotherms parameters | 吸附动力学参数 Adsorption kinetic model parameters | |||
---|---|---|---|---|
Freundlich 模型 | Langmuir 模型 | 拟一级吸附 动力学 | 拟二级吸附 动力学 | |
KF=26.2909 mg∙g-1 nF=0.3254 r2=0.8935 | qmax=183.1970 mg∙g-1 KL=0.0221 L∙g-1 r2=0.9858 | qe=153.7083 mg∙g-1 k1=0.0555 r2=0.9701 | qe=174.4224 mg∙g-1 k2=1.8056 r2=0.9962 |
[1] |
AGHABABAEI A, NCIBI M C, SILLANPAA M, 2017. Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues[J]. Bioresource Technology, 239: 28-36.
DOI URL |
[2] |
DROUSSI Z, D'ORAZIO V, PROVENZANO M R, et al., 2009. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry[J]. Journal of Hazardous Materials, 164(2-3): 1281-1285.
DOI URL |
[3] |
FANG C, ZHANG T, LI P, et al., 2014. Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater[J]. International Journal of Environmental Research and Public Health, 11(9): 9217-9237.
DOI URL |
[4] |
HANSEN H K, ARANCIBIA F, GUTIERREZ C, 2010. Adsorption of copper onto agriculture waste materials[J]. Journal of Hazardous Materials, 180(1): 442-448.
DOI URL |
[5] |
HE J S, MA P, XIE A T, et al., 2016. From black liquor to highly porous carbon adsorbents with tunable microstructure and excellent adsorption of tetracycline from water: Performance and mechanism study[J]. Journal of the Taiwan Institute of Chemical Engineers, 63: 295-302.
DOI URL |
[6] |
HU J W, LI Z, ZHANG A, et al., 2020. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review[J]. Environmental Research, DOI: 10.1016/j.envres.2020.109764.
DOI |
[7] |
HUANG D L, LIU L S, ZENG G M, et al., 2017. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J]. Chemosphere, 174: 545-553.
DOI URL |
[8] |
HUANG X X, LIU Y G, LIU S B, et al., 2016. Effective removal of Cr(VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J]. RSC Advances, 6(1): 94-104.
DOI URL |
[9] |
KHAN M A, ALQADAMI A A, OTERO M, et al., 2019. Heteroatom- doped magnetic hydrochar to remove post-transition and transition metals from water: Synthesis, characterization, and adsorption studies[J]. Chemosphere, 218: 1089-1099.
DOI URL |
[10] |
LI R H, LIANG W, HUANG H, et al., 2018. Removal of cadmium(Ⅱ) cations from an aqueous solution with aminothiourea chitosan strengthened magnetic biochar[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.46239.
DOI |
[11] |
LIU H K, XU F, XIE Y L, et al., 2018. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. The Science of the Total Environment, 645: 702-709.
DOI URL |
[12] |
LIU P Y, RAO D, ZOU L Y, et al., 2021. Capacity and potential mechanisms of Cd(Ⅱ) adsorption from aqueous solution by blue algae-derived biochars[J]. The Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.145447.
DOI |
[13] |
LUO M K, LIN H, LI B, et al., 2018. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J]. Bioresource Technology, 259: 312-318.
DOI URL |
[14] |
MA Y J, LIU Y, BIAN Y, et al., 2018. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H2 evolution and photoelectrochemical water splitting[J]. Journal of Colloid and Interface Science, 518: 140-148.
DOI URL |
[15] |
MOYNIHAN M, PETERSON K E, CANTORAL A, et al., 2017. Dietary predictors of urinary cadmium among pregnant women and children[J]. The Science of the Total Environment, 575: 1255-1262.
DOI URL |
[16] |
OFOMAJA A E, UNNUABONAH E I, OLADOJA N A, 2010. Competitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust[J]. Bioresource Technology, 101(11): 3844-3852.
DOI URL |
[17] |
TAN X F, LIU Y G, ZENG G M, et al., 2015. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 125: 70-85.
DOI URL |
[18] |
WANG J L, WANG S Z, 2019. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 227: 1002-1022.
DOI URL |
[19] |
WANG P, CHEN H P, KOPITTKE P M, et al., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 249: 1038-1048.
DOI URL |
[20] | WONGROD S, SIMON S, VAN HULLEBUSCH E D, et al., 2018. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(Ⅲ and V) and Cd(Ⅱ) sorption[J]. International Biodeterioration & Biodegradation, 135: 96-102. |
[21] |
XIANG J X, LIN Q T, YAO X S, et al., 2021. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil[J]. Environmental Research, DOI: 10.1016/j.envres.2020.110650.
DOI |
[22] |
YANG D X, VELAMAKANNI A, BOZOKLU G, et al., 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 47(1): 145-152.
DOI URL |
[23] |
YANG T T, XU Y M, HUANG Q Q, et al., 2021. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(Ⅱ) in water[J]. Bioresource Technology, 333: 125078.
DOI URL |
[24] |
YAO Y, GAO B, INYANG M, et al., 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 190(1-3): 501-507.
DOI URL |
[25] |
YIN G C, SONG X W, TAO L, et al., 2020. Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.124465.
DOI |
[26] |
YIN Z B, XU S, LIU S, et al., 2020. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019.122680.
DOI |
[27] |
ZHANG C, LAI C, ZENG G M, et al., 2016. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution[J]. Water Research, 95: 103-112.
DOI URL |
[28] |
ZHANG C, SHAN B Q, TANG W Z, et al., 2017. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Bioresource Technology, 238: 352-360.
DOI URL |
[29] |
ZHANG H Y, YUE X P, LI F, et al., 2018. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. The Science of the Total Environment, 631-632: 795-802.
DOI URL |
[30] |
ZHANG L K, GUO J Y, HUANG X M, et al., 2019. Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. RSC Advances, 9(1): 365-376.
DOI URL |
[31] | 郭琳颖, 王凯男, 王梦寒, 等, 2020. 芦苇生物质炭对镉的吸附及机制[J]. 农业资源与环境学报, 37(1): 66-73. |
GUO L Y, WANG K N, WANG M H, et al., 2020. Adsorption mechanisms of cadmium onto reed-derived biochar[J]. Journal of Agricultural Resources and Enviornment, 37(1): 66-73. | |
[32] | 李佳霜, 冒国龙, 赵松炎, 等, 2019. 改性生物炭吸附废水中Sb(V)的特性[J]. 江苏农业科学, 47(8): 289-295. |
LI J S, MAO G L, ZHAO S Y, et al., 2019. Adsorption of Sb(V) in waste water by modified biochar[J]. Jiangsu Agricultural Sciences, 47(8): 289-295. | |
[33] | 王道涵, 李景阳, 汤家喜, 2020. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 40(1): 18-23. |
WANG D H, LI J Y, TANG J X, 2020. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 40(1): 18-23. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[4] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[5] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[6] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[7] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[8] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[9] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[10] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[11] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[12] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[13] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[14] | LIU Shasha, CHEN Nuo, YANG Xiaoyin. Research Progress on Adsorption-Desorption Characteristics of Organic Pollutants by Microplastics and Their Combined Toxic Effects [J]. Ecology and Environment, 2022, 31(3): 610-620. |
[15] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn