Ecology and Environment ›› 2021, Vol. 30 ›› Issue (10): 2067-2075.DOI: 10.16258/j.cnki.1674-5906.2021.10.013
• Research Articles • Previous Articles Next Articles
CONG Xin(), LI Yao, WANG Yu, ZHENG Li
Received:
2021-09-18
Online:
2021-10-18
Published:
2021-12-21
作者简介:
丛鑫(1976年生),女,教授,博士,研究方向为土壤环境化学和生态修复。E-mail: congxin1800@163.com
基金资助:
CLC Number:
CONG Xin, LI Yao, WANG Yu, ZHENG Li. Adsorption Characterization of Atrazine in Aqueous Medium on Goethite Biochar Composites[J]. Ecology and Environment, 2021, 30(10): 2067-2075.
丛鑫, 李瑶, 王宇, 郑力. 生物炭基针铁矿复合材料对水中莠去津吸附特性研究[J]. 生态环境学报, 2021, 30(10): 2067-2075.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.10.013
生物炭种类 Types of biochar | 元素原子百分比 Atomic percentage of element/% | 比表面积 Specific surface area/ (m2∙g-1) | 孔结构分析 Pore structure analysis | |||||
---|---|---|---|---|---|---|---|---|
C | O | Fe | S | 最可几孔径 Mode pore size/nm | 平均孔径 Mean pore size/nm | 总孔体积 Total pore volume/(cm3∙g-1) | ||
N300 | 69.28 | 30.21 | 0.43 | 0.08 | 1.995 | 3.452 | 9.055 | 0.0079 |
N500 | 73.45 | 26.48 | 0.03 | 0.03 | 4.437 | 3.726 | 14.78 | 0.0785 |
J300 | 89.74 | 10.22 | 0.01 | 0.04 | 16.11 | 3.048 | 4.575 | 0.0412 |
J500 | 50.02 | 49.48 | 0.18 | 0.32 | 36.06 | 3.779 | 11.91 | 0.0435 |
GN300 | 66.28 | 30.65 | 2.84 | 0.22 | 35.43 | 3.396 | 15.83 | 0.1309 |
GN500 | 90.44 | 8.79 | 0.66 | 0.11 | 92.13 | 3.398 | 15.88 | 0.2086 |
GJ300 | 84.57 | 13.8 | 1.63 | 0 | 154.2 | 3.402 | 13.61 | 0.5416 |
GJ500 | 71.35 | 27.62 | 0.95 | 0.08 | 159.1 | 3.403 | 16.39 | 0.6321 |
Table 1 Physical and chemical properties of biochar and biochar goethite composites
生物炭种类 Types of biochar | 元素原子百分比 Atomic percentage of element/% | 比表面积 Specific surface area/ (m2∙g-1) | 孔结构分析 Pore structure analysis | |||||
---|---|---|---|---|---|---|---|---|
C | O | Fe | S | 最可几孔径 Mode pore size/nm | 平均孔径 Mean pore size/nm | 总孔体积 Total pore volume/(cm3∙g-1) | ||
N300 | 69.28 | 30.21 | 0.43 | 0.08 | 1.995 | 3.452 | 9.055 | 0.0079 |
N500 | 73.45 | 26.48 | 0.03 | 0.03 | 4.437 | 3.726 | 14.78 | 0.0785 |
J300 | 89.74 | 10.22 | 0.01 | 0.04 | 16.11 | 3.048 | 4.575 | 0.0412 |
J500 | 50.02 | 49.48 | 0.18 | 0.32 | 36.06 | 3.779 | 11.91 | 0.0435 |
GN300 | 66.28 | 30.65 | 2.84 | 0.22 | 35.43 | 3.396 | 15.83 | 0.1309 |
GN500 | 90.44 | 8.79 | 0.66 | 0.11 | 92.13 | 3.398 | 15.88 | 0.2086 |
GJ300 | 84.57 | 13.8 | 1.63 | 0 | 154.2 | 3.402 | 13.61 | 0.5416 |
GJ500 | 71.35 | 27.62 | 0.95 | 0.08 | 159.1 | 3.403 | 16.39 | 0.6321 |
生物炭类型 Types of biochar | 准一级动力学方程 Pseudo first-order kinetic equation | 准二级动力学方程 Pseudo second-order kinetic equation | 双常数方程 Double-constant equation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qe/(mg∙g-1) | k1/h-1 | r2 | qe/(mg∙g-1) | k2/(g∙mg-1∙h-1) | r2 | lna | Ks/(mg∙g-1∙h-1) | r2 | |||
N300 | 0.612 | 0.157 | 0.962 | 0.694 | 0.703 | 0.990 | -1.445 | 0.313 | 0.989 | ||
N500 | 0.452 | 0.211 | 0.898 | 0.528 | 0.513 | 0.995 | -1.347 | 0.201 | 0.972 | ||
J300 | 4.973 | 0.659 | 0.883 | 5.573 | 0.222 | 0.998 | 1.126 | 0.178 | 0.966 | ||
J500 | 4.454 | 0.232 | 0.823 | 5.125 | 0.202 | 0.996 | 1.067 | 0.163 | 0.986 | ||
GN300 | 1.323 | 0.158 | 0.978 | 1.468 | 0.331 | 0.992 | -0.775 | 0.344 | 0.975 | ||
GN500 | 1.529 | 0.186 | 0.990 | 1.677 | 0.318 | 0.994 | -0.612 | 0.339 | 0.968 | ||
GJ300 | 10.82 | 0.474 | 0.866 | 12.21 | 0.122 | 0.998 | 2.095 | 0.116 | 0.992 | ||
GJ500 | 8.097 | 0.237 | 0.729 | 9.274 | 0.112 | 0.997 | 1.617 | 0.178 | 0.967 |
Table 2 Kinetic equation parameters of atrazine adsorption on biochars and their composites
生物炭类型 Types of biochar | 准一级动力学方程 Pseudo first-order kinetic equation | 准二级动力学方程 Pseudo second-order kinetic equation | 双常数方程 Double-constant equation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qe/(mg∙g-1) | k1/h-1 | r2 | qe/(mg∙g-1) | k2/(g∙mg-1∙h-1) | r2 | lna | Ks/(mg∙g-1∙h-1) | r2 | |||
N300 | 0.612 | 0.157 | 0.962 | 0.694 | 0.703 | 0.990 | -1.445 | 0.313 | 0.989 | ||
N500 | 0.452 | 0.211 | 0.898 | 0.528 | 0.513 | 0.995 | -1.347 | 0.201 | 0.972 | ||
J300 | 4.973 | 0.659 | 0.883 | 5.573 | 0.222 | 0.998 | 1.126 | 0.178 | 0.966 | ||
J500 | 4.454 | 0.232 | 0.823 | 5.125 | 0.202 | 0.996 | 1.067 | 0.163 | 0.986 | ||
GN300 | 1.323 | 0.158 | 0.978 | 1.468 | 0.331 | 0.992 | -0.775 | 0.344 | 0.975 | ||
GN500 | 1.529 | 0.186 | 0.990 | 1.677 | 0.318 | 0.994 | -0.612 | 0.339 | 0.968 | ||
GJ300 | 10.82 | 0.474 | 0.866 | 12.21 | 0.122 | 0.998 | 2.095 | 0.116 | 0.992 | ||
GJ500 | 8.097 | 0.237 | 0.729 | 9.274 | 0.112 | 0.997 | 1.617 | 0.178 | 0.967 |
生物炭类型 Types of biochars | 温度 Temperature/K | Freundlich Model | $\lg {{q}_{\text{e}}}=\lg {{k}_{\text{f}}}+\frac{1}{\text{n}}\lg {{\rho }_{\text{e}}}$ | Langmuir Model | $\frac{1}{{{q}_{\text{e}}}}=\frac{1}{{{Q}_{\text{max}}}}+\frac{1}{{{Q}_{\max }}b}\cdot \frac{1}{{{\rho }_{\text{e}}}}$ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | KF | r2 | Koc/(L·g-1) | Qmax/(mg·L-1) | b | r2 | |||||
N300 | 298.15 | 0.869 | 0.091 | 0.991 | 0.498 | 8.355 | 0.009 | 0.992 | |||
308.15 | 0.858 | 0.107 | 0.995 | 0.687 | 8.853 | 0.009 | 0.991 | ||||
318.15 | 0.853 | 0.143 | 0.995 | 0.920 | 10.96 | 0.010 | 0.991 | ||||
N500 | 298.15 | 0.650 | 0.089 | 0.995 | 0.673 | 1.324 | 0.046 | 0.988 | |||
308.15 | 0.584 | 0.132 | 0.987 | 1.033 | 1.362 | 0.065 | 0.977 | ||||
318.15 | 0.544 | 0.193 | 0.982 | 1.492 | 1.584 | 0.084 | 0.973 | ||||
J300 | 298.15 | 0.393 | 2.090 | 0.958 | 12.17 | 7.823 | 0.266 | 0.951 | |||
308.15 | 0.356 | 2.677 | 0.987 | 15.06 | 8.379 | 0.385 | 0.888 | ||||
318.15 | 0.348 | 3.505 | 0.937 | 19.29 | 10.11 | 0.462 | 0.923 | ||||
J500 | 298.15 | 0.327 | 2.190 | 0.925 | 23.22 | 6.197 | 0.462 | 0.939 | |||
308.15 | 0.364 | 2.726 | 0.940 | 27.85 | 8.785 | 0.363 | 0.881 | ||||
318.15 | 0.297 | 3.821 | 0.937 | 37.29 | 9.351 | 0.682 | 0.880 | ||||
GN300 | 298.15 | 0.677 | 0.208 | 0.995 | 1.448 | 3.363 | 0.045 | 0.998 | |||
308.15 | 0.716 | 0.126 | 0.996 | 0.852 | 2.924 | 0.030 | 0.990 | ||||
318.15 | 0.651 | 0.119 | 0.992 | 0.890 | 1.732 | 0.048 | 0.981 | ||||
GN500 | 298.15 | 0.705 | 0.229 | 0.989 | 1.449 | 4.397 | 0.038 | 0.993 | |||
308.15 | 0.691 | 0.249 | 0.993 | 1.588 | 4.576 | 0.038 | 0.997 | ||||
318.15 | 0.696 | 0.262 | 0.992 | 1.846 | 5.252 | 0.034 | 0.981 | ||||
GJ300 | 298.15 | 0.371 | 4.378 | 0.991 | 21.48 | 15.42 | 0.253 | 0.959 | |||
308.15 | 0.429 | 3.228 | 0.993 | 17.60 | 14.20 | 0.200 | 0.980 | ||||
318.15 | 0.483 | 2.278 | 0.985 | 12.76 | 13.04 | 0.134 | 0.968 | ||||
GJ500 | 298.15 | 0.413 | 2.918 | 0.976 | 29.57 | 11.80 | 0.234 | 0.984 | |||
308.15 | 0.414 | 3.095 | 0.980 | 31.00 | 12.52 | 0.232 | 0.954 | ||||
318.15 | 0.374 | 3.716 | 0.994 | 36.04 | 13.19 | 0.254 | 0.924 |
Table 3 The parameters of isothermal adsorption model of atrazine on biochars and their composites
生物炭类型 Types of biochars | 温度 Temperature/K | Freundlich Model | $\lg {{q}_{\text{e}}}=\lg {{k}_{\text{f}}}+\frac{1}{\text{n}}\lg {{\rho }_{\text{e}}}$ | Langmuir Model | $\frac{1}{{{q}_{\text{e}}}}=\frac{1}{{{Q}_{\text{max}}}}+\frac{1}{{{Q}_{\max }}b}\cdot \frac{1}{{{\rho }_{\text{e}}}}$ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | KF | r2 | Koc/(L·g-1) | Qmax/(mg·L-1) | b | r2 | |||||
N300 | 298.15 | 0.869 | 0.091 | 0.991 | 0.498 | 8.355 | 0.009 | 0.992 | |||
308.15 | 0.858 | 0.107 | 0.995 | 0.687 | 8.853 | 0.009 | 0.991 | ||||
318.15 | 0.853 | 0.143 | 0.995 | 0.920 | 10.96 | 0.010 | 0.991 | ||||
N500 | 298.15 | 0.650 | 0.089 | 0.995 | 0.673 | 1.324 | 0.046 | 0.988 | |||
308.15 | 0.584 | 0.132 | 0.987 | 1.033 | 1.362 | 0.065 | 0.977 | ||||
318.15 | 0.544 | 0.193 | 0.982 | 1.492 | 1.584 | 0.084 | 0.973 | ||||
J300 | 298.15 | 0.393 | 2.090 | 0.958 | 12.17 | 7.823 | 0.266 | 0.951 | |||
308.15 | 0.356 | 2.677 | 0.987 | 15.06 | 8.379 | 0.385 | 0.888 | ||||
318.15 | 0.348 | 3.505 | 0.937 | 19.29 | 10.11 | 0.462 | 0.923 | ||||
J500 | 298.15 | 0.327 | 2.190 | 0.925 | 23.22 | 6.197 | 0.462 | 0.939 | |||
308.15 | 0.364 | 2.726 | 0.940 | 27.85 | 8.785 | 0.363 | 0.881 | ||||
318.15 | 0.297 | 3.821 | 0.937 | 37.29 | 9.351 | 0.682 | 0.880 | ||||
GN300 | 298.15 | 0.677 | 0.208 | 0.995 | 1.448 | 3.363 | 0.045 | 0.998 | |||
308.15 | 0.716 | 0.126 | 0.996 | 0.852 | 2.924 | 0.030 | 0.990 | ||||
318.15 | 0.651 | 0.119 | 0.992 | 0.890 | 1.732 | 0.048 | 0.981 | ||||
GN500 | 298.15 | 0.705 | 0.229 | 0.989 | 1.449 | 4.397 | 0.038 | 0.993 | |||
308.15 | 0.691 | 0.249 | 0.993 | 1.588 | 4.576 | 0.038 | 0.997 | ||||
318.15 | 0.696 | 0.262 | 0.992 | 1.846 | 5.252 | 0.034 | 0.981 | ||||
GJ300 | 298.15 | 0.371 | 4.378 | 0.991 | 21.48 | 15.42 | 0.253 | 0.959 | |||
308.15 | 0.429 | 3.228 | 0.993 | 17.60 | 14.20 | 0.200 | 0.980 | ||||
318.15 | 0.483 | 2.278 | 0.985 | 12.76 | 13.04 | 0.134 | 0.968 | ||||
GJ500 | 298.15 | 0.413 | 2.918 | 0.976 | 29.57 | 11.80 | 0.234 | 0.984 | |||
308.15 | 0.414 | 3.095 | 0.980 | 31.00 | 12.52 | 0.232 | 0.954 | ||||
318.15 | 0.374 | 3.716 | 0.994 | 36.04 | 13.19 | 0.254 | 0.924 |
Types of biochars | Temperature/ K | ΔG0/ (kJ∙mol-1) | ΔH0/ (kJ∙mol-1) | ΔS0/ (kJ∙mol-1∙K-1) | Types of biochars | Temperature/ K | ΔG0/ (kJ∙mol-1) | ΔH0/ (kJ∙mol-1) | ΔS0/ (kJ∙mol-1∙K-1) |
---|---|---|---|---|---|---|---|---|---|
N300 | 298.15 | -11.15 | 18.26 | 0.098 | GN300 | 298.15 | -13.23 | -22.01 | -0.03 |
308.15 | -11.97 | 308.15 | -12.31 | ||||||
318.15 | -13.12 | 318.15 | -12.65 | ||||||
N500 | 298.15 | -11.13 | 30.58 | 0.140 | GN500 | 298.15 | -13.47 | 5.35 | 0.06 |
308.15 | -12.51 | 308.15 | -14.07 | ||||||
318.15 | -13.92 | 318.15 | -14.73 | ||||||
J300 | 298.15 | -18.95 | 20.37 | 0.132 | GJ300 | 298.15 | -20.78 | -25.73 | -0.02 |
308.15 | -20.22 | 308.15 | -20.70 | ||||||
318.15 | -21.59 | 318.15 | -20.45 | ||||||
J500 | 298.15 | -19.07 | 21.89 | 0.137 | GJ500 | 298.15 | -19.78 | 9.48 | 0.10 |
308.15 | -20.27 | 308.15 | -20.59 | ||||||
318.15 | -21.82 | 318.15 | -21.74 |
Table 4 Thermodynamic parameters of atrazine adsorption on biochars and their composites
Types of biochars | Temperature/ K | ΔG0/ (kJ∙mol-1) | ΔH0/ (kJ∙mol-1) | ΔS0/ (kJ∙mol-1∙K-1) | Types of biochars | Temperature/ K | ΔG0/ (kJ∙mol-1) | ΔH0/ (kJ∙mol-1) | ΔS0/ (kJ∙mol-1∙K-1) |
---|---|---|---|---|---|---|---|---|---|
N300 | 298.15 | -11.15 | 18.26 | 0.098 | GN300 | 298.15 | -13.23 | -22.01 | -0.03 |
308.15 | -11.97 | 308.15 | -12.31 | ||||||
318.15 | -13.12 | 318.15 | -12.65 | ||||||
N500 | 298.15 | -11.13 | 30.58 | 0.140 | GN500 | 298.15 | -13.47 | 5.35 | 0.06 |
308.15 | -12.51 | 308.15 | -14.07 | ||||||
318.15 | -13.92 | 318.15 | -14.73 | ||||||
J300 | 298.15 | -18.95 | 20.37 | 0.132 | GJ300 | 298.15 | -20.78 | -25.73 | -0.02 |
308.15 | -20.22 | 308.15 | -20.70 | ||||||
318.15 | -21.59 | 318.15 | -20.45 | ||||||
J500 | 298.15 | -19.07 | 21.89 | 0.137 | GJ500 | 298.15 | -19.78 | 9.48 | 0.10 |
308.15 | -20.27 | 308.15 | -20.59 | ||||||
318.15 | -21.82 | 318.15 | -21.74 |
[1] |
CASTRO C S, GUERREIRO M C, GONCALVES M, et al., 2009. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium[J]. Journal of hazardous materials, 164(2-3):609-614.
DOI URL |
[2] |
CHEN B L, CHEN Z M, LV S F, 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 102(2):716-723.
DOI URL |
[3] |
GUO X T, DONG H, YANG C, et al., 2016. Application of goethite modified biochar for tylosin removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 502:81-88.
DOI URL |
[4] |
LI B, YANG L, WANG C Q, et al., 2017. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes[J]. Chemosphere, 175:332-340.
DOI URL |
[5] |
LIU N, CHARRUA A B, WENG C H, et al., 2015. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study[J]. Bioresource Technology, 198:55-62.
DOI URL |
[6] |
QU M J, LI H D, LI N, et al., 2017. Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments[J]. Chemosphere, 168:1515-1522.
DOI URL |
[7] | SUN K, GAO B, ZHANG Z Y, et al., 2010. Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment[J]. Envrionmental Pollution, 158(12):3520-3526. |
[8] |
TAO Y, HU S B, HAN S Y, et al., 2019. Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32[J]. Science of the Total Environment, 682:59-69.
DOI URL |
[9] | WANG H, CHU Y X, FANG C G, et al., 2017. Sorption of tetracycline on biochar derived from rice straw under different temperatures[J]. Plos One, 12(8):1-14. |
[10] |
WANG H, FANG C G, WANG Q, et al., 2018. Sorption of tetracycline on biochar derived from rice straw and swine manure[J]. RSC Advances, 8(29):16260-16268.
DOI URL |
[11] | YANG F, SUN L L, XIE W L, et al., 2017. Nitrogen-functionalization biochars derived from wheat straws via molten salt synjournal: An efficient adsorbent for atrazine removal[J]. Science of the Total Envrionment, 607-608:1391-1399. |
[12] | ZHANG Z S, WANG X J, WANG Y, et al., 2013. Pb(Ⅱ) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves[J]. Journal of Environmental Science, 25(5):1044-1053. |
[13] | ZHU S H, ZHAO J J, ZHAO N, et al., 2020. Goethite modified biochar as a multifunctional amendment for cationic Cd(Ⅱ), anionic As(Ⅲ), roxarsone, and phosphorus in soil and water[J]. Journal of Cleaner Production, 247:1-10. |
[14] | CHARRUA A B, 2015. 生物碳吸附去除溶液中的阿特拉津[D]. 吉林: 吉林大学. |
CHARRUA A B, 2015. Adsorptive removal of atrazine from aqueous solution by various types of biochars[D]. Jilin: Jilin University. | |
[15] | 程婉艺, 2020. 改性生物炭有机复合材料的制备及吸附性能的研究[D]. 青岛: 青岛科技大学. |
CHENG W Y, 2020. Preparation and adsorption capability of modified biochar composites[D]. Qingdao: Qingdao University of Science and Technology. | |
[16] | 程扬, 沈启斌, 刘子丹, 等, 2019. 两种生物炭的制备及其对水溶液中四环素去除的影响因素[J]. 环境科学, 40(3):1328-1336. |
CHENG Y, SHEN Q B, LIU Z D, et al., 2019. Preparation of two kinds of biochar and the factors influencing tetracycline removal from aqueous solution[J]. Environmental Science, 40(3):1328-1336. | |
[17] | 邓雅雯, 晏彩霞, 聂明华, 等, 2020. 生物炭对抗生素的吸附/解吸研究进展[J]. 环境污染与防治, 42(3):376-384. |
DENG Y W, YAN C X, NIE M H, et al., 2020. Study on the antibiotic adsorption/desorption of biochar: A review[J]. Environmental Pollution and Control, 42(3):376-384. | |
[18] | 樊玉娜, 2019. 高羊茅生物炭对不同类型土壤中阿特拉津及其代谢产物吸附能力的影响研究[D]. 曲阜: 曲阜师范大学. |
FAN Y N, 2019. Effects of tall festuca biochar on the adsorption capacity of Atrazine and its metabolites in different types of soils[D]. Qufu: Qufu Normal University. | |
[19] | 冯婧微, 徐英侠, 兰希平, 2014. 改性纳米零价铁去除水中莠去津[J]. 农药, 53(9):651-654. |
FENG J W, XU Y X, LAN X P, 2014. Removal of atrazine in wastewater using modified nanoscale zero-valent iron[J]. Agrochemicals, 53(9):651-654. | |
[20] | 李昉泽, 冯丹, 邓惠, 等, 2015. 阿特拉津在5种农业土壤中的吸附解吸特性分析[J]. 生态环境学报, 24(12):2056-2061. |
LI F Z, FENG D, DENG H, et al., 2015. Adsorption and desorption of atrazine in five agriculture soils[J]. Ecology and Environmental Sciences, 24(12):2056-2061. | |
[21] | 廖家辉, 2014. AFT在“氧化铁-腐殖质-Pb2+”系统中的吸附及土壤中AFT/Pb2+检测的生物传感新方法[D]. 重庆: 西南大学. |
LIAO J H, 2014. Adsorption of AFT in “iron oxide-humus-Pb2+” system and new biosensing methods for AFT/Pb2+ measurement in soil[D]. Chongqing: Southwest University. | |
[22] | 刘娜, 杨亚冬, ALBERTO B C, 等, 2016. 响应曲面法优化生物质炭去除水溶液中的阿特拉津[J]. 吉林大学学报(地球科学版), 46(4):1199-1207. |
LIU N, YANG Y D, ALBERTO B C, et al., 2016. Optimization of atrazine removal from aqueous solution by biochar using response surface methodology[J]. Journal of Jilin University (Earth Science Edition), 46(4):1199-1207. | |
[23] | 阮梦娜, 王宇芳, 楼筱珺, 等, 2016. 生物炭耦合菌剂法去除污染水体中的苯胺[J]. 环境工程学报, 10(5):2454-2458. |
RUAN M N, WANG Y F, LOU X J, et al., 2016. Aniline removal with biochar coupling microbial agents[J]. Chinese Journal of Environmental Engineering, 10(5):2454-2458. | |
[24] | 宋桃莉, 伊学农, 王玉琳, 等, 2013. 超声协同Feton法与类Feton法预处理莠去津农药废水研究[J]. 水资源与水工程学报, 24(6):153-156. |
SONG T L, YI X N, WANG Y L, et al., 2013. Study on pretreatment of atrazine pesticide wastewater by ultrasound coupling with Fenton and Fenton-like methods[J]. Journal of Water Resources and water Engineering, 24(6):153-156. | |
[25] | 孙莉莉, 2019. 不同粒径生物炭对水溶液中阿特拉津和铅的吸附行为研究[D]. 哈尔滨: 东北农业大学. |
SUN L L, 2019. Adsorption of atrazine and lead in aqueous solution onto biochars of different particle sizes[D]. Harbin: Northeast Agricultural University. | |
[26] | 王靖宜, 王丽, 张文龙, 等, 2019. 生物炭基复合材料制备及其对水体特征污染物的吸附性能[J]. 化工进展, 38(8):3838-3851. |
WANG J Y, WANG L, ZHANG W L, et al., 2019. Preparation of biochar-based composites and their adsorption performances for characteristic contaminants in wastewater[J]. Chemical Industry and Engineering Progress, 38(8):3838-3851. | |
[27] | 王晟, 冯翔, 李兵, 等, 2021. 多种铁改性和未改性生物炭对模拟地下水中六价铬的去除[J]. 吉林大学学报(地球科学版), 51(1):247-255. |
WANG S, FENG X, LI B, et al., 2021. Removal of hexavalent chromium from simulated groundwater by variety of iron-modified and unmodified biochars[J]. Journal of Jilin University (Earth Science Edition), 51(1):247-255. | |
[28] | 王旭峰, 郑立安, 刘毛, 等, 2017. 改性玉米芯生物炭对废水中铜和氨氮的吸附[J]. 工业水处理, 37(1):37-41. |
WANG X F, ZHENG L A, LIU M, et al., 2017. Adsorption characters of Cu2+ and NH4+-N in wastewater by modified corncob biochar[J]. Industrial Water Treatment, 37(1):37-41. | |
[29] | 魏茁, 姜英宇, 陈立飞, 等, 2021. Fe & Cu生物炭复合材料脱除污染水体中金霉素[J]. 生态环境学报, 30(4):805-815. |
WEI Z, JIANG Y Y, CHEN L F, et al., 2021. Fe & Cu-biochar composite material to remove chlortetracycline from polluted water[J]. Ecology and Environmental Sciences, 30(4):805-815. | |
[30] | 徐雄, 李春梅, 孙静, 等, 2016. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 11(2):347-354. |
XU X, LI C M, SUN J, et al., 2016. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 11(2):347-354. | |
[31] | 徐雪斌, 丁竹红, 胡忻, 等, 2017. 花生壳基和木屑基生物炭对离子型染料Pb(Ⅱ)的吸附性能研究[J]. 环境污染与防治, 39(9):929-935. |
XU X B, DING Z H, HU X, et al., 2017. Study on the antibiotic adsorption/desorption of biochar: A review[J]. Environmentl Pollution and Control, 39(9):929-935. | |
[32] | 俞花美, 2014. 生物质炭对环境中阿特拉津的吸附解吸作用及机理研究[D]. 北京: 中国矿业大学(北京). |
YU H M, 2014. Sorption/desorption characteristics and mechanisms of bio-chars with atrazine in environment[D]. Beijing: China University of Mining and Technology (Beijing). | |
[33] | 张海波, 苏龙, 程红艳, 等, 2021. 不同热解温度制备的香菇菌糠生物炭对孔雀石绿的吸附及其机理分析[J]. 核农学报, 35(5):1231-1242. |
ZHANG H B, SU L, CHENG H Y, et al., 2021. Adsorption and mechanism analysis of Malachite green adsorption by spent Lentinus edodes substrate based biochar prepared at different pyrolysis temperatures[J]. Journal of nuclear agricultural science, 35(5):1231-1242. | |
[34] | 张苏明, 张建强, 周凯, 等, 2021. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 30(7):1503-1512. |
ZHANG S M, ZHANG J Q, ZHOU K, et al., 2021. Adsorption effect and mechanism of iron-based modified coconut shell biochar to arsenic[J]. Ecology and Environmental Sciences, 30(7):1503-1512. | |
[35] | 张晓蕾, 薛文平, 徐恒振, 等, 2012. 近海沉积物对粪固醇的等温吸附和热力学研究[J]. 环境科学, 33(10):3547-3553. |
ZHANG X L, XUE W P, XU H Z, et al., 2012. Sorption isotherms and sorption thermodynamics of faecal sterols on offshore sediment[J]. Environmental Science, 33(10):3547-3553. | |
[36] | 张照然, 2020. 生物炭基复合材料去除水中磷酸盐的应用研究[D]. 济南: 济南大学. |
ZHANG Z R, 2020. Applied study on the removal of phosphate from aqueous solutions by biochar based composites[D]. Ji’nan: University of Ji’nan. |
[1] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[2] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[3] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
[4] | YANG Qiu, CAO Yingjie, ZHANG Yu, CHEN Jianyao, WANG Shizhong, TIAN Di. Hydrochemical Characteristics and Its Cause Analysis of Groundwater and Mine Water in Closed Lead Zinc Mining Area [J]. Ecology and Environment, 2023, 32(2): 361-371. |
[5] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420. |
[6] | TONG Yindong, HUANG Lanlan, YANG Ning, ZHANG Yiyan, LI Zipeng, SHAO Bo. Distribution Characteristics and Potential Environmental Risk Analysis of Microcystins in Global Water Bodies [J]. Ecology and Environment, 2023, 32(1): 129-138. |
[7] | ZHANG Licong, XIAO Kai, ZHANG Peng, LI Hailong, WANG Junjian, LI Zhenyang, WANG Fangfang, XU Hualin, GUO Yuehua. Tidal Variation Characteristics of Heavy Metals and Dissolved Organic Matter and Environmental Impact in a Silt Tidal Flat [J]. Ecology and Environment, 2022, 31(11): 2169-2179. |
[8] | WANG Haihe, SUN Yuanyuan, ZhANG Shuai, XU Xiaorong, SHANG Chengmei, LI Chunxiang. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Drinking Water Source of Guiyang [J]. Ecology and Environment, 2022, 31(10): 2039-2047. |
[9] | LIU Chang, LUO Yanli, LIU Chentong, ZHENG Yuhong, CHAO Bo, DONG Lele. Spatial Distribution Characteristics of Arsenic in Groundwater and Cropland Soil in the Lower Reaches of Kuitun River [J]. Ecology and Environment, 2022, 31(10): 2070-2078. |
[10] | WANG Zhao, ZHANG Manyin, HU Yukun, LIU Weiwei, ZHANG Miaomiao. Effect of Salinity on Mercury Methylation in Sediments of A Typical Coastal Wetland [J]. Ecology and Environment, 2022, 31(9): 1876-1884. |
[11] | CHEN Xiaowan, TIAN Huachuan, CHANG Junjun, CHEN Liqiang, SHU Xingquan, FENG Xiuxiang. Purification Efficiency for Polluted River Water and Microbial Community Characteristics of A Surface-flow Wetland Located at Zhonghe River Estuary near Qilu Lake [J]. Ecology and Environment, 2022, 31(9): 1865-1875. |
[12] | WU Haoping, QIN Hongjie, HE Bin, YOU Yi, CHEN Jinfeng, ZOU Chunping, YANG Siyu, HAO Beibei. A Brief Discussion on the Development Trend of the Agricultural Non-point Source Pollution Control Model Based on Carbon Neutrality [J]. Ecology and Environment, 2022, 31(9): 1919-1926. |
[13] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[14] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[15] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn