Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1827-1840.DOI: 10.16258/j.cnki.1674-5906.2025.12.001
• Original article [Ecology] • Next Articles
BU Lingxin1(
), QIN Mengting1, FENG Kepeng1,2,3,4,*(
), LAI Quan5
Received:2025-03-06
Online:2025-12-18
Published:2025-12-10
卜灵心1(
), 秦梦婷1, 冯克鹏1,2,3,4,*(
), 来全5
通讯作者:
*Email:Fengkp@nxu.edu.cn
作者简介:卜灵心(1998年生),男,博士研究生,主要从事水文遥感研究。E-mail: blx_1998@163.com
基金资助:CLC Number:
BU Lingxin, QIN Mengting, FENG Kepeng, LAI Quan. Evaluation of the Ecological Vulnerability of Grassland Ecosystems in Arid and Semi-arid Regions under the Background of Climate Change[J]. Ecology and Environmental Sciences, 2025, 34(12): 1827-1840.
卜灵心, 秦梦婷, 冯克鹏, 来全. 气候变化背景下干旱半干旱区草原生态系统的生态脆弱性评价[J]. 生态环境学报, 2025, 34(12): 1827-1840.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.001
Figure 3 Spatial distribution maps and temporal variation trend charts of the annual average GPP, temperature and precipitation on the Mongolian Plateau from 2000 to 2023
| 草原类型 | 暴露度指数(EI) | 敏感性指数(SI) | 适应性指数(RI) | 脆弱性指数(VI) |
|---|---|---|---|---|
| 典型草原-草甸草原 | 0.85*1) | 0.50* | 0.87* | 0.48* |
| 典型草原-荒漠草原 | 0.97* | 0.37* | 0.15* | 0.52* |
| 荒漠草原-草甸草原 | 0.77* | 0.89* | 0.91* | 0.78* |
Table 1 t-test Table
| 草原类型 | 暴露度指数(EI) | 敏感性指数(SI) | 适应性指数(RI) | 脆弱性指数(VI) |
|---|---|---|---|---|
| 典型草原-草甸草原 | 0.85*1) | 0.50* | 0.87* | 0.48* |
| 典型草原-荒漠草原 | 0.97* | 0.37* | 0.15* | 0.52* |
| 荒漠草原-草甸草原 | 0.77* | 0.89* | 0.91* | 0.78* |
| [1] |
BANKS-LEITE C, PARDINI R, TAMBOSI L R, et al., 2014. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot[J]. Science, 345(6200): 1041-1045.
DOI URL |
| [2] |
BEAUGRAND G, EDWARDS M, RAYBAUD V, et al., 2015. Future vulnerability of marine biodiversity compared with contemporary and past changes[J]. Nature Climate Change, 5(7): 695-701.
DOI |
| [3] |
CAI Q Y, CHEN W, CHEN S F, et al., 2024. Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability[J]. Nature Geoscience, 17(3): 181-188.
DOI |
| [4] |
DE KEERSMAECKER W, LHERMITTE S, TITS L, et al., 2015. A model quantifying global vegetation resistance and resilience to short‐term climate anomalies and their relationship with vegetation cover[J]. Global Ecology and Biogeography, 24(5): 539-548.
DOI URL |
| [5] |
DHAENE S, ROSSEEL Y, 2023. An evaluation of non-iterative estimators in the structural after measurement (SAM) approach to structural equation modeling (SEM)[J]. Structural Equation Modeling: A Multidisciplinary Journal, 30(6): 926-940.
DOI URL |
| [6] |
DOBROWSKI SZ, ABATZOGLOU J, SWANSON AK, et al., 2013. The climate velocity of the contiguous United States during the 20th century[J]. Global Change Biology, 19(1): 241-251.
DOI PMID |
| [7] | DU J, HE Z B, PIATEK K B, et al., 2019. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China[J]. Agricultural and Forest Meteorology, 269: 71-77. |
| [8] | DU Q Q, SUN Y F, GUAN Q Y, et al., 2022. Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China[J]. Journal of Hydrology, 612(Part C): 128305. |
| [9] |
DUVEILLER G, CESCATTI A, 2016. Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity[J]. Remote Sensing of Environment, 182: 72-89.
DOI URL |
| [10] |
FREMOUT T, THOMAS E, GAISBERGER H, et al., 2020. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests[J]. Global Change Biology, 26(6): 3552-3568.
DOI PMID |
| [11] |
GAO J B, JIAO K W, WU S H, 2018. Quantitative assessment of ecosystem vulnerability to climate change: methodology and application in China[J]. Environmental Research Letters, 13(9): 094016.
DOI URL |
| [12] |
GUO B, ZANG W Q, LUO W, 2020. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference[J]. Science of The Total Environment, 741: 140256.
DOI URL |
| [13] |
GUO E, WANG Y, WANG C, et al., 2021. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau[J]. Remote Sensing, 13(4): 688.
DOI URL |
| [14] |
HE B, CHEN A F, WANG H L, et al., 2015. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest Region in China[J]. Remote Sensing, 7(8): 9998-10016.
DOI URL |
| [15] |
HOOVER D L, KNAPP A K, SMITH M D, 2014. Resistance and resilience of a grassland ecosystem to climate extremes[J]. Ecology, 95(9): 2646-2656.
DOI URL |
| [16] | IPCC, 2021. Climate change 2021: The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press. |
| [17] |
JAVED T, LI Y, FENG K, et al., 2021. Monitoring responses of vegetation phenology and productivity to extreme climatic conditions using remote sensing across different sub-regions of China[J]. Environmental Science and Pollution Research, 28(3): 3644-3659.
DOI |
| [18] |
JIN H, BAO G, CHEN J Q, et al., 2020. Modifying the maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau[J]. International Journal of Remote Sensing, 41(10): 3740-3760.
DOI URL |
| [19] |
KLØVE B, ALA-AHO P, BERTRAND G, et al., 2014. Climate change impacts on groundwater and dependent ecosystems[J]. Journal of Hydrology, 518(Part B): 250-266.
DOI URL |
| [20] |
KRÖEL-DULAY G, RANSIJN J, SCHMIDT I K, et al., 2015. Increased sensitivity to climate change in disturbed ecosystems[J]. Nature Communications, 6(1): 6682.
DOI |
| [21] |
LARIS P, DADASHI S, JO A, et al., 2016. Buffering the savanna: fire regimes and disequilibrium ecology in west Africa[J]. Plant Ecology, 217: 583-596.
DOI URL |
| [22] |
LEICHENKO R M, O’BRIEN K L, 2002. The dynamics of rural vulnerability to global change: The case of southern Africa[J]. Mitigation and Adaptation Strategies for Global Change, 7(1): 1-18.
DOI |
| [23] |
LI D L, WU S Y, LIU L B, et al., 2018. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 24(9): 4095-4106.
DOI PMID |
| [24] |
LI L H, ZHANG Y L, WU J S, et al., 2019. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau[J]. Science of The Total Environment, 678: 21-29.
DOI URL |
| [25] |
LIU X Y, LAI Q, YIN S, et al., 2022. Exploring grassland ecosystem water use efficiency using indicators of precipitation and soil moisture across the Mongolian Plateau[J]. Ecological Indicators, 142: 109207.
DOI URL |
| [26] | NIU W, 1989. The discriminatory index with regard to the weakness, overlapness, and breadth of ecotone[J]. Acta Ecologica Sinica, 9(2): 97-105. |
| [27] |
OLIVERAS I, MALHI Y, 2016. Many shades of green: the dynamic tropical forest-savannah transition zones[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703): 20150308.
DOI URL |
| [28] |
QIN Y Y, FENG Q, HOLDEN N M, et al., 2016. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China[J]. Catena, 147: 308-314.
DOI URL |
| [29] |
REN J Y, TONG S Q, YING H, et al., 2022. Historical and future changes in extreme climate events and their effects on vegetation on the Mongolian Plateau[J]. Remote Sensing, 14(18): 4642.
DOI URL |
| [30] |
VERBESSELT J, UMLAUF N, HIROTA M, et al., 2016. Remotely sensed resilience of tropical forests[J]. Nature Climate Change, 6(11): 1028-1031.
DOI |
| [31] |
WILLIS KJ, JEFFERS ES, TOVAR C, 2018. What makes a terrestrial ecosystem resilient?[J]. Science, 359(6379): 988-989.
DOI PMID |
| [32] |
WU J C, SUN Z Y, YAO Y, et al., 2023. Trends of grassland resilience under climate change and human activities on the Mongolian Plateau[J]. Remote Sensing, 15(12): 2984.
DOI URL |
| [33] |
XIA M, JIA K, ZHAO W W, et al., 2021. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau[J]. Ecological Indicators, 123: 107274.
DOI URL |
| [34] |
XU H J, ZHAO C Y, WANG X P, 2020. Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China[J]. Land Degradation & Development, 31(15): 2087-2103.
DOI URL |
| [35] |
YAN Z Y, GAO Z H, SUN B, et al., 2023. Global degradation trends of grassland and their driving factors since 2000[J]. International Journal of Digital Earth, 16(1): 1661-1684.
DOI URL |
| [36] |
YANG W J, WANG Y H, WEBB A A, et al., 2018. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China[J]. Science of The Total Environment, 612: 1007-1017.
DOI URL |
| [37] |
ZENG Z Z, PIAO S L, LI L Z, et al., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades[J]. Nature Climate Change, 7(6): 432-436.
DOI URL |
| [38] |
ZHANG F, LIU X P, ZHANG J Q, et al., 2017. Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China[J]. Ecological Modelling, 349: 41-50.
DOI URL |
| [39] |
ZHANG Q, YUAN R Y, SINGH V P, et al., 2022. Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China[J]. Ecological Indicators, 134: 108483.
DOI URL |
| [1] | XU Da, GONG Chengcheng, ZHANG Zaiyong, RAN Bin, HU Yue, WANG Hanbing, CHEN Chen. The Spatiotemporal Variation Patterns of Vegetation Net Primary Productivity and Its Influencing Factors in the Mu Us Sandy Land [J]. Ecology and Environmental Sciences, 2025, 34(9): 1361-1372. |
| [2] | LI Dongyi, LI Tingting, XUE Wanyi, XIA Yongzhi, WANG Zhengxiang. Prediction and Analysis of Potential Habitat Distribution of Taxus wallichiana var. Chinensis under Climate Change: A Case Study of Hubei Province [J]. Ecology and Environmental Sciences, 2025, 34(9): 1398-1409. |
| [3] | LIU Zeyuan, WEI Youhai, YAN Xufa, CHENG Liang, HOU Lu, YAN Ziwei, GUO Liangzhi. Impact of Climate Change on the Potential Geographic Distribution of the Invasive Weed Sonchus asper [J]. Ecology and Environmental Sciences, 2025, 34(6): 845-852. |
| [4] | ZHANG Yali, HUANG Zhujun, TIAN Yichao, LIN Junliang, QIN Caihuan. Time-lag and Accumulation Responses of Fractional Vegetation Coverage Change to Extreme Climate in Southwestern China [J]. Ecology and Environmental Sciences, 2025, 34(5): 665-677. |
| [5] | HU Yonghong, YUAN Yanfeng, XU Ronghan, AI Jinlong, HOU Meiting. The Characterization of Heat Wave Changes in Hainan Island Based on the Annual Heatwave Magnitude Index [J]. Ecology and Environmental Sciences, 2025, 34(12): 1909-1918. |
| [6] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
| [7] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
| [8] | LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin [J]. Ecology and Environmental Sciences, 2024, 33(5): 802-811. |
| [9] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environmental Sciences, 2024, 33(4): 509-519. |
| [10] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environmental Sciences, 2023, 32(5): 825-834. |
| [11] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environmental Sciences, 2023, 32(5): 898-909. |
| [12] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2023, 32(3): 439-449. |
| [13] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1521-1529. |
| [14] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environmental Sciences, 2022, 31(8): 1566-1572. |
| [15] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environmental Sciences, 2022, 31(7): 1293-1305. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn