Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (7): 1042-1052.DOI: 10.16258/j.cnki.1674-5906.2025.07.005
• Papers on “Emerging Pollutants” • Previous Articles Next Articles
MA Linting(), WEI Jianbing, ZHANG Weiwei(
), SUN Zicheng, XU Jiayao
Received:
2025-01-24
Online:
2025-07-18
Published:
2025-07-11
通讯作者:
*E-mail: 作者简介:
马林婷(2000年生),女,硕士研究生,主要从事土壤和地下水污染物迁移研究。E-mail: 15714173285@163.com
基金资助:
CLC Number:
MA Linting, WEI Jianbing, ZHANG Weiwei, SUN Zicheng, XU Jiayao. Effect of Flow Rate and Flow Interruption on the Co-transport of Nanoplastics and Triclosan[J]. Ecology and Environmental Sciences, 2025, 34(7): 1042-1052.
马林婷, 魏建兵, 张巍巍, 孙子程, 许佳瑶. 流速和水流中断对纳米塑料与三氯生共迁移的影响[J]. 生态环境学报, 2025, 34(7): 1042-1052.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.07.005
实验 编号 | PSNP质量 浓度/(mg·L−1) | TCS质量浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断 时间/h | 流出液收集间隔/min |
---|---|---|---|---|---|
1 | 10 | 0 | 1.0 | 0 | 3 |
2 | 0 | 5 | 1.0 | 0 | 3 |
3 | 10 | 5 | 1.0 | 0 | 3 |
4 | 10 | 0 | 0.3 | 0 | 10 |
5 | 0 | 5 | 0.3 | 0 | 10 |
6 | 10 | 5 | 0.3 | 0 | 10 |
7 | 10 | 0 | 0.3 | 2 | 10 |
8 | 0 | 5 | 0.3 | 2 | 10 |
9 | 10 | 5 | 0.3 | 2 | 10 |
10 | 10 | 0 | 0.3 | 12 | 10 |
11 | 0 | 5 | 0.3 | 12 | 10 |
12 | 10 | 5 | 0.3 | 12 | 10 |
13 | 10 | 0 | 0.3 | 24 | 10 |
14 | 0 | 5 | 0.3 | 24 | 10 |
15 | 10 | 5 | 0.3 | 24 | 10 |
Table 1 Experimental conditions for flow rate and flow interruption
实验 编号 | PSNP质量 浓度/(mg·L−1) | TCS质量浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断 时间/h | 流出液收集间隔/min |
---|---|---|---|---|---|
1 | 10 | 0 | 1.0 | 0 | 3 |
2 | 0 | 5 | 1.0 | 0 | 3 |
3 | 10 | 5 | 1.0 | 0 | 3 |
4 | 10 | 0 | 0.3 | 0 | 10 |
5 | 0 | 5 | 0.3 | 0 | 10 |
6 | 10 | 5 | 0.3 | 0 | 10 |
7 | 10 | 0 | 0.3 | 2 | 10 |
8 | 0 | 5 | 0.3 | 2 | 10 |
9 | 10 | 5 | 0.3 | 2 | 10 |
10 | 10 | 0 | 0.3 | 12 | 10 |
11 | 0 | 5 | 0.3 | 12 | 10 |
12 | 10 | 5 | 0.3 | 12 | 10 |
13 | 10 | 0 | 0.3 | 24 | 10 |
14 | 0 | 5 | 0.3 | 24 | 10 |
15 | 10 | 5 | 0.3 | 24 | 10 |
实验 编号 | PSNP质量 浓度/ (mg·L−1) | TCS质量 浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断时间/ h | 回收率(MPSNP)/% | 滞留 回收率(NPSNP)/% | 第2动力学点位附着系数(ka2)/(min−1) | 第1动力学点位附着系数 (ka1)/(min−1) | 第1动力学点位分离系数 (kd1)/(min−1) | 第2点位的 最大附着量(Smax)/(mg·kg−1) | 模型拟合度(r2) |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 10 | 0 | 0.3 | 0 | 82.6 | 4.4 | 1.22×10−2 | 0.20×10−2 | 0.14×10−2 | 0.13 | 0.99 |
6 | 10 | 5 | 0.3 | 0 | 89.0 | 3.8 | 1.90×10−3 | 0.10×10−2 | 1.22 | 5.75×10−2 | 0.99 |
1 | 10 | 0 | 1.0 | 0 | 96.1 | 3.9 | 5.13×10−3 | 0.67 | 4.36 | 6.65×10−2 | 0.99 |
3 | 10 | 5 | 1.0 | 0 | 97.4 | 3.1 | 1.80×10−3 | 0.12×10−2 | 1.92 | 5.74×10−2 | 0.98 |
7 | 10 | 0 | 0.3 | 2 | 78.6 | 5.2 | 1.28×10−2 | 0.15×10−2 | 0.80×10−3 | 0.29 | 0.98 |
10 | 10 | 0 | 0.3 | 12 | 76.8 | 6.0 | 3.96×10−2 | 0.12×10−2 | 0.10×10−3 | 0.40 | 0.98 |
13 | 10 | 0 | 0.3 | 24 | 74.2 | 6.2 | 4.52×10−2 | 0.60×10−3 | 0.40×10−3 | 0.50 | 0.96 |
9 | 10 | 5 | 0.3 | 2 | 87.9 | 4.8 | 5.10×10−3 | 0.15×10−2 | 0.99×10−2 | 0.19 | 0.97 |
12 | 10 | 5 | 0.3 | 12 | 83.2 | 5.6 | 4.52×10−2 | 0.60×10−3 | 0.80×10−2 | 0.16 | 0.98 |
15 | 10 | 5 | 0.3 | 24 | 76.6 | 5.9 | 9.98×10−2 | 0.50×10−3 | 0.50×10−2 | 0.29 | 0.95 |
Table 2 Recovery rates and kinetic parameters of PSNP transport in quartz sand
实验 编号 | PSNP质量 浓度/ (mg·L−1) | TCS质量 浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断时间/ h | 回收率(MPSNP)/% | 滞留 回收率(NPSNP)/% | 第2动力学点位附着系数(ka2)/(min−1) | 第1动力学点位附着系数 (ka1)/(min−1) | 第1动力学点位分离系数 (kd1)/(min−1) | 第2点位的 最大附着量(Smax)/(mg·kg−1) | 模型拟合度(r2) |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 10 | 0 | 0.3 | 0 | 82.6 | 4.4 | 1.22×10−2 | 0.20×10−2 | 0.14×10−2 | 0.13 | 0.99 |
6 | 10 | 5 | 0.3 | 0 | 89.0 | 3.8 | 1.90×10−3 | 0.10×10−2 | 1.22 | 5.75×10−2 | 0.99 |
1 | 10 | 0 | 1.0 | 0 | 96.1 | 3.9 | 5.13×10−3 | 0.67 | 4.36 | 6.65×10−2 | 0.99 |
3 | 10 | 5 | 1.0 | 0 | 97.4 | 3.1 | 1.80×10−3 | 0.12×10−2 | 1.92 | 5.74×10−2 | 0.98 |
7 | 10 | 0 | 0.3 | 2 | 78.6 | 5.2 | 1.28×10−2 | 0.15×10−2 | 0.80×10−3 | 0.29 | 0.98 |
10 | 10 | 0 | 0.3 | 12 | 76.8 | 6.0 | 3.96×10−2 | 0.12×10−2 | 0.10×10−3 | 0.40 | 0.98 |
13 | 10 | 0 | 0.3 | 24 | 74.2 | 6.2 | 4.52×10−2 | 0.60×10−3 | 0.40×10−3 | 0.50 | 0.96 |
9 | 10 | 5 | 0.3 | 2 | 87.9 | 4.8 | 5.10×10−3 | 0.15×10−2 | 0.99×10−2 | 0.19 | 0.97 |
12 | 10 | 5 | 0.3 | 12 | 83.2 | 5.6 | 4.52×10−2 | 0.60×10−3 | 0.80×10−2 | 0.16 | 0.98 |
15 | 10 | 5 | 0.3 | 24 | 76.6 | 5.9 | 9.98×10−2 | 0.50×10−3 | 0.50×10−2 | 0.29 | 0.95 |
PSNP质量 浓度/ (mg·L−1) | TCS质量 浓度/ (mg·L−1) | 背景溶液NaCl浓度/ (mmol·L−1) | PSNP的Zeta电位/ mV | 石英砂的Zeta电位/ mV |
---|---|---|---|---|
10 | 0 | 0.5 | −55.49 | −58.24 |
10 | 5 | 0.5 | −61.77 | −53.53 |
Table 3 Zeta potentials of quartz sand and PSNP
PSNP质量 浓度/ (mg·L−1) | TCS质量 浓度/ (mg·L−1) | 背景溶液NaCl浓度/ (mmol·L−1) | PSNP的Zeta电位/ mV | 石英砂的Zeta电位/ mV |
---|---|---|---|---|
10 | 0 | 0.5 | −55.49 | −58.24 |
10 | 5 | 0.5 | −61.77 | −53.53 |
实验编号 | PSNP质量浓度/ (mg·L−1) | TCS质量浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断时间/ h | 回收率(MTCS)/% | 一级吸附速率系数 (ω)/(min−1) | 线性吸附分配系数(Kd)/(cm3·g−1) | 平衡吸附点位占总吸附点位的比例(f) | 模型拟合度 (r2) |
---|---|---|---|---|---|---|---|---|---|
5 | 0 | 5 | 0.3 | 0 | 23.8 | 0.236×10−3 | 22.60 | 1.16×10−2 | 0.98 |
6 | 10 | 5 | 0.3 | 0 | 61.5 | 0.324×10−3 | 5.38 | 1.48×10−2 | 0.97 |
2 | 0 | 5 | 1.0 | 0 | 46.3 | 0.429×10−2 | 3.04 | 5.28×10−2 | 0.98 |
3 | 10 | 5 | 1.0 | 0 | 79.5 | 0.420×10−2 | 0.95 | 8.42×10−2 | 0.99 |
8 | 0 | 5 | 0.3 | 2 | 16.4 | 0.190×10−3 | 27.20 | 1.25×10−2 | 0.72 |
11 | 0 | 5 | 0.3 | 12 | 14.8 | 0.166×10−3 | 27.60 | 1.45×10−2 | 0.42 |
14 | 0 | 5 | 0.3 | 24 | 13.8 | 0.590×10−4 | 30.00 | 0.43×10−2 | 0.47 |
9 | 10 | 5 | 0.3 | 2 | 59.1 | 0.196×10−3 | 7.15 | 1.35×10−2 | 0.94 |
12 | 10 | 5 | 0.3 | 12 | 51.2 | 0.142×10−3 | 8.63 | 1.10×10−2 | 0.70 |
15 | 10 | 5 | 0.3 | 24 | 47.7 | 0.120×10−3 | 9.15 | 0.98×10−2 | 0.67 |
Table 4 Recovery rates and model fitting parameters for TCS transport in quartz sand
实验编号 | PSNP质量浓度/ (mg·L−1) | TCS质量浓度/ (mg·L−1) | 流速/ (mL·min−1) | 中断时间/ h | 回收率(MTCS)/% | 一级吸附速率系数 (ω)/(min−1) | 线性吸附分配系数(Kd)/(cm3·g−1) | 平衡吸附点位占总吸附点位的比例(f) | 模型拟合度 (r2) |
---|---|---|---|---|---|---|---|---|---|
5 | 0 | 5 | 0.3 | 0 | 23.8 | 0.236×10−3 | 22.60 | 1.16×10−2 | 0.98 |
6 | 10 | 5 | 0.3 | 0 | 61.5 | 0.324×10−3 | 5.38 | 1.48×10−2 | 0.97 |
2 | 0 | 5 | 1.0 | 0 | 46.3 | 0.429×10−2 | 3.04 | 5.28×10−2 | 0.98 |
3 | 10 | 5 | 1.0 | 0 | 79.5 | 0.420×10−2 | 0.95 | 8.42×10−2 | 0.99 |
8 | 0 | 5 | 0.3 | 2 | 16.4 | 0.190×10−3 | 27.20 | 1.25×10−2 | 0.72 |
11 | 0 | 5 | 0.3 | 12 | 14.8 | 0.166×10−3 | 27.60 | 1.45×10−2 | 0.42 |
14 | 0 | 5 | 0.3 | 24 | 13.8 | 0.590×10−4 | 30.00 | 0.43×10−2 | 0.47 |
9 | 10 | 5 | 0.3 | 2 | 59.1 | 0.196×10−3 | 7.15 | 1.35×10−2 | 0.94 |
12 | 10 | 5 | 0.3 | 12 | 51.2 | 0.142×10−3 | 8.63 | 1.10×10−2 | 0.70 |
15 | 10 | 5 | 0.3 | 24 | 47.7 | 0.120×10−3 | 9.15 | 0.98×10−2 | 0.67 |
[1] | AMORIM M J B, SCOTT-FORDSMAND J J, 2021. Plastic pollution-a case study with enchytraeus crypticus-from micro-to nanoplastics[J]. Environmental Pollution, 271: 116363. |
[2] | ATUGODA T, WIJESEKARA H, WERELLAGAMA D, et al., 2020. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water[J]. Environmental Technology & Innovation, 19: 100971. |
[3] |
BAI H J, COCHET N, PAUSS A, et al., 2016. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media[J]. Colloids and Surfaces B-Biointerfaces, 139: 148-155.
DOI PMID |
[4] | BECKER M W, REIMUS P W, VILKS P, 1999. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests[J]. Groundwater, 37(3): 387-395. |
[5] | BENNACER L, AHFIR N D, ALEM A, et al., 2017. Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media[J]. Transport in Porous Media, 118(2): 251-269. |
[6] | BERGENDAHL J, GRASSO D, 2000. Prediction of colloid detachment in a model porous media: Hydrodynamics[J]. Chemical Engineering Science, 55(9): 1523-1532. |
[7] | BLYTHMAN R, PERSOONS T, JEFFERS N, et al., 2017. Localised dynamics of laminar pulsatile flow in a rectangular channel[J]. International Journal of Heat and Fluid Flow, 66: 8-17. |
[8] | BORTHAKUR A, CRANMER B K, DOOLEY G P, et al., 2021. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil[J]. Environmental Pollution, 286: 117297. |
[9] | BRADFORD S A, TORKZABAN S, 2008. Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models[J]. Vadose Zone Journal, 7(2): 667-681. |
[10] | BRUSSEAU M L, 1992. Nonequilibrium transport of organic chemicals: The impact of pore-water velocity[J]. Journal of Contaminant Hydrology, 9(4): 353-368. |
[11] | CARSTENS J F, BACHMANN J, NEUWEILER I, 2017. Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520: 532-543. |
[12] | CYRIL G, YVES-HENRI F, RÉMI B, et al., 2010. Contact erosion at the interface between granular coarse soil and various base soils under tangential flow condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 136(5): 741-750. |
[13] |
DHILLON G S, KAUR S, PULICHARLA R, et al., 2015. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential[J]. International Journal of Environmental Research and Public Health, 12(5): 5657-5684.
DOI PMID |
[14] | DONG S, ZHOU M Z, SU X T, et al., 2022. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media: A real-time pore-scale visualization[J]. Water Research, 214: 118195. |
[15] | ESFAHANI A R, FIROUZI A F, SAYYAD G, et al., 2014. Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: Effects of initial particle concentration and ionic strength[J]. Journal of Industrial and Engineering Chemistry, 20(5): 2671-2679. |
[16] | GROLIMUND D, ELIMELECH M, BORKOVEC M, et al., 1998. Transport of in situ mobilized colloidal particles in packed soil columns[J]. Environmental Science & Technology, 32(22): 3562-3569. |
[17] | HU E Z, SHANG S Y, FU Z T, et al., 2020. Cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated porous media: Effects of PSNP/naphthalene ratio and ionic strength[J]. Chemosphere, 245: 125602. |
[18] |
KAH M, SIGMUND G, XIAO F, et al., 2017. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials[J]. Water Research, 124: 673-692.
DOI PMID |
[19] | KO C H, ELIMELECH M, 2000. The “Shadow Effect” in colloid transport and deposition dynamics in granular porous media: Measurements and mechanisms[J]. Environmental Science & Technology, 34(17): 3681-3689. |
[20] | KRETZSCHMAR R, BARMETTLER K, GROLIMUND D, et al., 1997. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media[J]. Water Resources Research, 33(5): 1129-1137. |
[21] |
LI Y D, LI M, LI Z, et al., 2019. Effects of particle size and solution chemistry on triclosan sorption on polystyrene microplastic[J]. Chemosphere, 231: 308-314.
DOI PMID |
[22] |
LIU X W, ZHENG M G, WANG L, et al., 2018. Sorption behaviors of tris-(2,3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics[J]. Marine Pollution Bulletin, 135: 581-586.
DOI PMID |
[23] | LIU J, ZHANG T, TIAN L L, et al., 2019. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 53(10): 5805-5815. |
[24] | MCDOWELL-BOYER L M, 1992. Chemical mobilization of micron-sized particles in saturated porous media under steady flow conditions[J]. Environmental Science & Technology, 26(3): 586-593. |
[25] | MONDAL P K, SLEEP B E, 2012. Colloid transport in dolomite rock fractures: Effects of fracture characteristics, specific discharge, and ionic strength[J]. Environmental Science & Technology, 46(18): 9987-9994. |
[26] | PASWAN A, SHARMA P K, 2023. Two-dimensional modeling of colloid-facilitated contaminant transport in groundwater flow systems with stagnant zones[J]. Water Resources Research, 59(2): e2022WR033130. |
[27] | RAMSPERGER A, NARAYANA V K B, GROSS W, et al., 2020. Environmental exposure enhances the internalization of microplastic particles into cells[J]. Science Advances, 6(50): edbd1211. |
[28] |
SANTAEUFEMIA S, ABALDE J, TORRES E, 2019. Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: Kinetic and equilibrium studies[J]. Journal of Hazardous Materials, 369: 674-683.
DOI PMID |
[29] | SASIDHARAN S, BRADFORD S A, TORKZABAN S, et al., 2017. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media[J]. Science of the Total Environment, 603-604: 406-415. |
[30] | SHANG J Y, LIU C X, WANG Z M, 2013. Transport and retention of engineered nanoporous particles in porous media: Effects of concentration and flow dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417: 89-98. |
[31] | ŠUNTA U, PROSENC F, TREBŠE P, et al., 2020. Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil[J]. Chemosphere, 261: 127762. |
[32] | WANG T, WANG L, CHEN Q Q, et al., 2020. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport[J]. Science of the Total Environment, 748: 142427. |
[33] | WU X L, LYU X Y, LI Z Y, et al., 2020. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 707: 136065. |
[34] | XI X L, WANG L, ZHOU T, et al., 2022. Effects of physicochemical factors on the transport of aged polystyrene nanoparticles in saturated porous media[J]. Chemosphere, 289: 133239. |
[35] |
YANG W, WANG Y, SHANG J Y, et al., 2017. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media[J]. Chemosphere, 189: 556-564.
DOI PMID |
[36] | ZHAO W G, ZHAO Y W, GENG T, et al., 2023. Co-transport behavior and trojan-horse effect of colloidal microplastics with different functional groups and heavy metals in porous media[J]. Journal of Hazardous Materials, 459: 131892. |
[37] |
ZHU Y J, MA L Q, DONG X L, et al., 2014. Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils[J]. Journal of Hazardous Materials, 264: 286-292.
DOI PMID |
[38] | ZVIKELSKY O, WEISBROD N, 2006. Impact of particle size on colloid transport in discrete fractures[J]. Water Resources Research, 42(12): W12S08. |
[39] | ZVIKELSKY O, WEISBROD N, DODY A, 2008. A comparison of clay colloid and artificial microsphere transport in natural discrete fractures[J]. Journal of Colloid Interface Science, 323(2): 286-292. |
[40] | 姬庆松, 孔祥程, 王信凯, 等, 2022. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展[J]. 环境化学, 41(1): 70-82. |
JI Q S, KONG X C, WANG X K, et al., 2022. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review[J]. Environmental Chemistry, 41(1): 70-82. | |
[41] | 王楚, 张巧言, 胡恩柱, 2023. 微塑料对四环素和三氯生在饱和多孔介质中迁移的影响[J]. 生态学杂志, 42(6): 1457-1463. |
WANG C, ZHANG Q Y, HU E Z, 2023. Effect of microplastics on transports of tetracycline and triclosan in saturated porous media[J]. Chinese Journal of Ecology, 42(6): 1457-1463. | |
[42] | 王晓庆, 2022. 老化作用对微塑料吸附三氯生和诺氟沙星的影响机制研究[D]. 郑州: 郑州大学. |
WANG X Q, 2022. The study on influence mechanism of aging on the adsorption of triclosan and norfloxacin by microplastics[D]. Zhengzhou: Zhengzhou University. |
[1] | YAN Tao, MENG Deyou, LIN Weijia, HONG Jin, GE Feifan, YAO Yao, CHENG Si, WANG Hong. Characteristics of a Nocturnal Ozone Pollution Process in Southern Fujian and the Impact of Vertical Transport [J]. Ecology and Environmental Sciences, 2025, 34(6): 914-921. |
[2] | YAN Xingrui, GONG Ping, WANG Xiaoping, SHANG Lihai, LI Yinong, MAO Feijian, NIU Xuerui, ZHANG Bo. Organochlorine Pollutants in Soils and Grasses in the Three-River Headwater Region: Distributions, Sources, and Ecological Risks [J]. Ecology and Environmental Sciences, 2024, 33(3): 428-438. |
[3] | ZHAO Hongyan, WANG Bin. Distribution Characteristics and Exposure Risk of Per- and Polyfluoroalkyl Substances in Indoor Environments [J]. Ecology and Environmental Sciences, 2023, 32(11): 2007-2018. |
[4] | LIU An, WU Hao, HE Beibei. Toxic Effects of Nanoplastics on Terrestrial Environment: A Review [J]. Ecology and Environmental Sciences, 2023, 32(11): 2030-2040. |
[5] | FU Chuanbo, DAN Li, LIU Lijun, TONG Jinhe. Characteristics of A Typical Ozone Pollution Event and Its Meteorological Reason in Sanya City in Autumn 2019 [J]. Ecology and Environmental Sciences, 2022, 31(1): 89-99. |
[6] | DING Hong, YU Juhua, ZHENG Xiangzhou, ZHANG Yushu, ZHONG Yunfeng. Review on Effect of Municipal Sewage Sludge Application on Yield and Quality of Crops and Soil Quality in China [J]. Ecology and Environmental Sciences, 2021, 30(9): 1933-1942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn