Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (6): 853-862.DOI: 10.16258/j.cnki.1674-5906.2025.06.003
• Research Article [Ecology] • Previous Articles Next Articles
LIU Yajun1(), DUAN Yipeng2, LI Rongfu1, CHI Zeyong1, WU Yongming1,2,*(
)
Received:
2024-11-25
Online:
2025-06-18
Published:
2025-06-11
刘亚军1(), 段亦鹏2, 李荣富1, 池泽涌1, 吴永明1,2,*(
)
通讯作者:
* 吴永明, E-mail: 作者简介:
刘亚军(1989年生),男,助理研究员,博士,主要从事环境微生物学研究。E-mail: 1160389236@qq.com
基金资助:
CLC Number:
LIU Yajun, DUAN Yipeng, LI Rongfu, CHI Zeyong, WU Yongming. Characteristics of Prokaryotic Communities in Sediments of a Lake Inflow Estuary Under Different Nutrient Environments: A Case Study of the Raohe Estuary[J]. Ecology and Environmental Sciences, 2025, 34(6): 853-862.
刘亚军, 段亦鹏, 李荣富, 池泽涌, 吴永明. 不同养分环境下入湖河口沉积物原核生物群落特征——以饶河入湖口为例[J]. 生态环境学报, 2025, 34(6): 853-862.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.06.003
取样点 | w(Clay)/% | w(Silt)/% | w(Sand)/% | pH | w(SOC)/(g·kg‒1) | w(TN)/(g·kg‒1) | w(TP)/(g·kg‒1) | w(NO3‒-N)/(mg·kg‒1) | w(NH4+-N)/(mg·kg‒1) | 样点分组 |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 17.49 | 25.80 | 56.71 | 6.52 | 10.78 | 0.63 | 0.44 | 0.58 | 15.47 | M |
S2 | 16.49 | 24.21 | 59.30 | 6.44 | 14.98 | 0.83 | 0.49 | 0.85 | 28.09 | M |
S3 | 12.49 | 20.21 | 67.30 | 6.59 | 8.90 | 0.43 | 0.35 | 0.15 | 22.32 | L |
S4 | 10.48 | 8.12 | 81.40 | 6.63 | 4.71 | 0.18 | 0.25 | 0.36 | 0.47 | L |
S5 | 26.50 | 36.26 | 37.24 | 6.44 | 14.59 | 0.99 | 0.46 | 0.44 | 26.97 | M |
S6 | 6.47 | 4.01 | 89.52 | 6.93 | 1.87 | 0.10 | 0.19 | 0.23 | 0.20 | L |
S7 | 4.47 | 2.05 | 93.48 | 7.08 | 1.18 | 0.10 | 0.20 | 0.39 | 0.15 | L |
S8 | 20.51 | 44.27 | 35.22 | 6.51 | 18.20 | 1.20 | 0.58 | 0.70 | 36.97 | H |
S9 | 21.50 | 33.28 | 45.22 | 6.46 | 19.27 | 1.38 | 0.63 | 1.50 | 42.22 | H |
S10 | 20.51 | 38.21 | 41.28 | 6.31 | 19.00 | 1.37 | 0.56 | 1.03 | 45.91 | H |
S11 | 13.49 | 23.13 | 63.38 | 6.75 | 10.01 | 0.72 | 0.48 | 0.99 | 13.88 | M |
S12 | 14.48 | 14.14 | 71.38 | 6.70 | 7.69 | 0.64 | 0.37 | 0.63 | 13.14 | L |
S13 | 20.50 | 32.26 | 47.24 | 6.67 | 20.22 | 1.32 | 0.58 | 0.47 | 32.88 | H |
S14 | 17.49 | 19.21 | 63.30 | 6.61 | 15.50 | 0.99 | 0.53 | 0.56 | 40.52 | H |
S15 | 17.49 | 19.21 | 63.30 | 6.54 | 13.30 | 0.84 | 0.47 | 0.15 | 12.90 | M |
Table 1 Sample group and physicochemical parameters
取样点 | w(Clay)/% | w(Silt)/% | w(Sand)/% | pH | w(SOC)/(g·kg‒1) | w(TN)/(g·kg‒1) | w(TP)/(g·kg‒1) | w(NO3‒-N)/(mg·kg‒1) | w(NH4+-N)/(mg·kg‒1) | 样点分组 |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 17.49 | 25.80 | 56.71 | 6.52 | 10.78 | 0.63 | 0.44 | 0.58 | 15.47 | M |
S2 | 16.49 | 24.21 | 59.30 | 6.44 | 14.98 | 0.83 | 0.49 | 0.85 | 28.09 | M |
S3 | 12.49 | 20.21 | 67.30 | 6.59 | 8.90 | 0.43 | 0.35 | 0.15 | 22.32 | L |
S4 | 10.48 | 8.12 | 81.40 | 6.63 | 4.71 | 0.18 | 0.25 | 0.36 | 0.47 | L |
S5 | 26.50 | 36.26 | 37.24 | 6.44 | 14.59 | 0.99 | 0.46 | 0.44 | 26.97 | M |
S6 | 6.47 | 4.01 | 89.52 | 6.93 | 1.87 | 0.10 | 0.19 | 0.23 | 0.20 | L |
S7 | 4.47 | 2.05 | 93.48 | 7.08 | 1.18 | 0.10 | 0.20 | 0.39 | 0.15 | L |
S8 | 20.51 | 44.27 | 35.22 | 6.51 | 18.20 | 1.20 | 0.58 | 0.70 | 36.97 | H |
S9 | 21.50 | 33.28 | 45.22 | 6.46 | 19.27 | 1.38 | 0.63 | 1.50 | 42.22 | H |
S10 | 20.51 | 38.21 | 41.28 | 6.31 | 19.00 | 1.37 | 0.56 | 1.03 | 45.91 | H |
S11 | 13.49 | 23.13 | 63.38 | 6.75 | 10.01 | 0.72 | 0.48 | 0.99 | 13.88 | M |
S12 | 14.48 | 14.14 | 71.38 | 6.70 | 7.69 | 0.64 | 0.37 | 0.63 | 13.14 | L |
S13 | 20.50 | 32.26 | 47.24 | 6.67 | 20.22 | 1.32 | 0.58 | 0.47 | 32.88 | H |
S14 | 17.49 | 19.21 | 63.30 | 6.61 | 15.50 | 0.99 | 0.53 | 0.56 | 40.52 | H |
S15 | 17.49 | 19.21 | 63.30 | 6.54 | 13.30 | 0.84 | 0.47 | 0.15 | 12.90 | M |
[1] |
AN J X, LIU C, WANG Q, et al., 2019. Soil bacterial community structure in Chinese wetlands[J]. Geoderma, 337: 290-299.
DOI |
[2] | BASTIDA F, ELDRIDGE D J, GARCÍA C, et al., 2021. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 15(7): 2081-2091. |
[3] | BEGMATOV S, BELETSKY A V, DEDYSH S N, et al., 2022. Genome analysis of the candidate phylum MBNT15 bacterium from a boreal peatland predicted its respiratory versatility and dissimilatory iron metabolism[J]. Frontiers in Microbiology, 13: 951761. |
[4] | BODMER P, WILKINSON J, LORKE A, 2020. Sediment properties drive spatial variability of potential methane production and oxidation in small streams[J]. Journal of Geophysical Research: Biogeosciences, 125(1): e2019JG005213. |
[5] | CHANG W J, SUN J L, PANG Y, et al., 2020. Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China[J]. Environmental Science and Pollution Research, 27(36): 44983-44994. |
[6] | CHI Y, ZHAO M W, SUN J K, et al., 2019. Mapping soil total nitrogen in an estuarine area with high landscape fragmentation using a multiple-scale approach[J]. Geoderma, 339(5): 70-84. |
[7] | CRUMP B C, BOWEN J L, 2024. The microbial ecology of estuarine ecosystems[J]. Annual Review of Marine Science, 16: 335-360. |
[8] | DAI Z J, MEI X F, DARBY S E, et al., 2018. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system[J]. Journal of Hydrology, 566: 719-734. |
[9] | GENG Y Q, WANG D W, YANG W B, 2017. Effects of different inundation periods on soil enzyme activity in riparian zones in Lijiang[J]. Catena, 149(Part 1): 19-27. |
[10] |
GUPTA V V S R, TIEDJE J M, 2024. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales[J]. mLife, 3(1): 21-41.
DOI PMID |
[11] |
HAN X G, SCHUBERT C J, FISKAL A, et al., 2020. Eutrophication as a driver of microbial community structure in lake sediments[J]. Environmental Microbiology, 22(8): 3446-3462.
DOI PMID |
[12] | JI N N, LIU Y, WANG S R, et al., 2022. Buffering effect of suspended particulate matter on phosphorus cycling during transport from rivers to lakes[J]. Water Research, 216: 118350. |
[13] | JIAO S, PENG Z H, QI J J, et al., 2021. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling[J]. mSystems, 6(2): e01052-20. |
[14] | JUNG M-Y, SEDLACEK C J, KITS K D, et al., 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities[J]. The ISME Journal, 16(1): 272-283. |
[15] | KRAUSE L, RODIONOV A, SCHWEIZER S A, et al., 2018. Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols[J]. Soil and Tillage Research, 182: 123-129. |
[16] | LI Q C, WANG L L, FU Y, et al., 2023. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review[J]. Journal of Soils and Sediments, 23(3): 1485-1500. |
[17] | LI S L, GANG D, ZHAO S J, et al., 2020. Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment[J]. Chemosphere, 269: 128702. |
[18] | LIAO W F, TONG D, LI Z W, et al., 2021. Characteristics of microbial community composition and its relationship with carbon, nitrogen and sulfur in sediments[J]. Science of The Total Environment, 795: 148848. |
[19] | LIU R X, YAO Y, CHU Q W, et al., 2024. Enhanced soil microbial stability is associated with soil organic carbon storage under high-altitude forestation[J]. Journal of Environmental Management, 370: 122462. |
[20] | LIU Y J, WEN Z, HE M J, et al., 2023. Dry-wet seasonal variations of microbially mediated carbon metabolism in soils of a floodplain lake[J]. Ecohydrology, 16(3): e2510. |
[21] | MARTIN M, 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet. Journal, 17(1): 10-12. |
[22] | NIEKERK L V, ADAMS J, JAMES N C, et al., 2020. An estuary ecosystem classification that encompasses biogeography and a high diversity of types in support of protection and management[J]. African Journal of Aquatic Science, 45(1-2): 199-216. |
[23] | OLIVEIRA R S, PINTO O H B, QUIRINO B F, et al., 2023. Genome-resolved metagenomic analysis of Great Amazon Reef System sponge-associated Latescibacterota bacteria and their potential contributions to the host sponge and reef[J]. Frontiers in Microbiomes, 2: 1206961. |
[24] | ONLEY JENNY R, AHSAN S, SANFORD ROBERT A, et al., 2018. Denitrification by anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK[J]. Applied and Environmental Microbiology, 84(4): e01985-17. |
[25] | PARK K, KIM C Y, KIRK M F, et al., 2023. Effects of natural non-volcanic CO2 leakage on soil microbial community composition and diversity[J]. Science of The Total Environment, 862: 160754. |
[26] | PRAETZEL L S E, PLENTER N, SCHILLING S, et al., 2020. Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake[J]. Biogeosciences, 17(20): 5057-5078. |
[27] | RAKHSH F, GOLCHIN A, BEHESHTI AL AGHA A, et al., 2020. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved[J]. Soil Biology and Biochemistry, 151: 108036. |
[28] | REED H E, MARTINY J B H, 2013. Microbial composition affects the functioning of estuarine sediments[J]. The ISME Journal, 7(4): 868-879. |
[29] | SANTMIRE J A, LEFF L G, 2007. The influence of stream sediment particle size on bacterial abundance and community composition[J]. Aquatic Ecology, 41(2): 153-160. |
[30] | TIAN L, SHI W, 2014. Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids[J]. Biology and Fertility of Soils, 50(5): 785-794. |
[31] | UNDA-CALVO J, MARTÍNEZ-SANTOS M, RUIZ-ROMERA E, et al., 2019. Implications of denitrification in the ecological status of an urban river using enzymatic activities in sediments as an indicator[J]. Journal of Environmental Sciences, 75: 255-268. |
[32] | VANWONTERGHEM I, EVANS P N, PARKS D H, et al., 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota[J]. Nature Microbiology, 1(12): 16170. |
[33] |
WAGG C, BENDER S F, WIDMER F, et al., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(14): 5266-5270.
DOI PMID |
[34] | WANG J W, CHEN Y, CAI P G, et al., 2022. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau[J]. Journal of Hazardous Materials, 423(Part B): 127170. |
[35] | XU Q C, ZHANG H, VANDENKOORNHUYSE P, et al., 2024. Carbon starvation raises capacities in bacterial antibiotic resistance and viral auxiliary carbon metabolism in soils[J]. Proceedings of the National Academy of Sciences, 121(16): e2318160121. |
[36] | XU S, CAI C, GUO J H, et al., 2018. Different clusters of Candidatus ‘Methanoperedens nitroreducens’-like archaea as revealed by high-throughput sequencing with new primers[J]. Scientific Reports, 8(1): 7695. |
[37] | YANG J Q, ZHANG X N, BOURG I C, et al., 2021b. 4D imaging reveals mechanisms of clay-carbon protection and release[J]. Nature Communications, 12(1): 622. |
[38] | YANG J, JIANG H C, SUN X X, et al., 2021a. Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity[J]. FEMS Microbiology Ecology, 97(1): fiaa234. |
[39] | YUAN C B, ZHAO F C, ZHAO X H, et al., 2020. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland[J]. Chemical Engineering Journal, 392: 124840. |
[40] | YUAN Y Q, LI X Z, XIE Z L, et al., 2022. Annual lateral organic carbon exchange between salt marsh and adjacent water: A case study of east headland marshes at the Yangtze Estuary[J]. Frontiers in Marine Science, 8: 809618. |
[41] | ZHANG F, ZHANG H, YUAN Y, et al., 2020. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Frontiers of Environmental Science & Engineering, 14(2): 28. |
[42] | ZHANG H, JIANG N, ZHANG S Y, et al., 2024. Soil bacterial community composition is altered more by soil nutrient availability than pH following long-term nutrient addition in a temperate steppe[J]. Frontiers in Microbiology, 15: 1455891. |
[43] | ZHANG S, HU W J, XU Y, et al., 2022. Linking bacterial and fungal assemblages to soil nutrient cycling within different aggregate sizes in agroecosystem[J]. Frontiers in Microbiology, 13: 1038536. |
[44] | ZHOU J, YOU X G, NIU B W, et al., 2020. Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J]. Science of The Total Environment, 703: 135532. |
[1] | REN Chenjian, HAO Ruixia, ZHANG Yang, HAN Lijuan, WEI Yuxing, CHAI Lu. The Release Characteristics of Ammonia Nitrogen from River Sediments Driven by Hydrodynamic Forces [J]. Ecology and Environmental Sciences, 2025, 34(6): 931-940. |
[2] | FANG Hua, WANG Yan, LI Xuan, ZHANG Tingting, ZHAO Yi, XU Lin. Combined Effects of Natural Organic Matters, Calcium and Magnesium Ions on the Stability of GO in Water [J]. Ecology and Environmental Sciences, 2025, 34(5): 754-762. |
[3] | LIANG Zhu, PAN Shulin, GUO Fangcheng. Variations of the Spatiotemporal Distributions of Nitrogen and Phosphorus in the Sichuan Section Mainstem in the Upper Yangtze River after the Impoundment of the Xiangjiaba Reservoir [J]. Ecology and Environmental Sciences, 2025, 34(4): 581-592. |
[4] | YUE Hangyu, GUO Chengjiu, SU Fangli, WEI Chao. Analysis of Rhizosphere Soil Microbial Community Structure and Diversity of Different Vegetation Types in Liaohe Estuary Wetland [J]. Ecology and Environmental Sciences, 2025, 34(2): 222-232. |
[5] | WEN Shan, XING Siqi, XIAO Yuxiang, LIU Yun, WU Xu. Study on Pollutant Phosphorus Release Behavior during Dredging Process of Tianfumiao Reservoir Based on Multi-field Coupling Finite Element Method [J]. Ecology and Environmental Sciences, 2024, 33(9): 1438-1450. |
[6] | OUYANG Meifeng, YIN Yuying, ZHANG Jinchen, LIU Qinglin, XIE Yinan, FANG Ping. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Typical Water Areas of Dongting Lake [J]. Ecology and Environmental Sciences, 2024, 33(8): 1269-1278. |
[7] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(8): 1279-1288. |
[8] | JIANG Xiaojing, XIE Jiahui, MA Kai, GAO Li. Phosphate Solubilizing Ability of Phosphate-Solubilizing Bacteria in Sediments and Its Effects on the Growth of Chaetomorpha sp. in Swan Lagoon [J]. Ecology and Environmental Sciences, 2024, 33(4): 633-644. |
[9] | LUO Qing, HE Qing, WU Huiqiu, KOU Liyue, FANG Xu, ZHANG Xinyu, LI Yuan, CHAI Yuting, ZHANG Ruisheng, DAI Wenju. Characteristics of Soil Organic Carbon Fractions in Liao River Estuary Wetland and Their Influencing Factors [J]. Ecology and Environmental Sciences, 2024, 33(3): 333-340. |
[10] | HE Ziqi, FANG Xi, HONG Yu. Influence of Plant Configuration on Sediment Size and the Removal of Carbon, Nitrogen and Phosphorus in Agricultural Drainage Ditches [J]. Ecology and Environmental Sciences, 2024, 33(11): 1727-1736. |
[11] | CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River [J]. Ecology and Environmental Sciences, 2023, 32(9): 1663-1672. |
[12] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environmental Sciences, 2023, 32(8): 1487-1495. |
[13] | ZHOU Hongguang, GAN Yanping, WU Dequan, YANG Yanmei, ZHANG Yang, WANG Luyao. Regulation of Arsenic Transport and Transformation in Contaminated Sediment by FeMnMg-LDH under Flooding-drying Conditions [J]. Ecology and Environmental Sciences, 2023, 32(7): 1249-1262. |
[14] | TONG Yongjie, WANG Yi, HUA Yumei, ZHAO Jianwei, LIU Guanglong, JIANG Yongcan. Transformation of Phosphorus in Sediments Driven by Nitrate and Iron in the Presence of Organic Electron Donor [J]. Ecology and Environmental Sciences, 2023, 32(7): 1263-1274. |
[15] | ZHANG Guangyi, ZHANG Jiatao, WANG Xiaowei. Phosphorus Speciation Distribution and Release in Lake Sediment Microbial Fuel Cells [J]. Ecology and Environmental Sciences, 2023, 32(3): 590-598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn