[1] |
BANAŚ K, AKSMANN A, PŁACHNO B J, et al., 2024. Individual architecture and photosynthetic performance of the submerged form of Drosera intermedia Hayne[J]. BMC Plant Biology, 24(1): 449-449.
DOI
PMID
|
[2] |
DA-SILVA J C, AMARANTE D L, 2020. Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation[J]. Environmental and Experimental Botany, 180: 104242.
|
[3] |
DE SOUZA T C, DE CASTRO E M, MAGALHÃES P C, et al., 2012. Early characterization of maize plants in selection cycles under soil flooding[J]. Plant Breeding, 131(4): 493-501.
|
[4] |
DUARTE I C, MARTINS C A, AMARANTE D L, et al., 2020. Flood duration differentially affects seed germination, growth and ecophysiology of the swamp tree Citronella gongonha from the southern Neotropics[J]. Flora, 271: 151683.
|
[5] |
FENG K, WANG X, ZHOU Q, et al., 2022. Waterlogging priming enhances hypoxia stress tolerance of wheat offspring plants by regulating root phenotypic and physiological adaption[J]. Plants, 11(15): 1969-1969.
|
[6] |
FRANCESCO M, JUAN S, MARÍA L, 2019. Internal aeration and respiration of submerged tomato hypocotyls is enhanced by ethylene‐mediated aerenchyma formation and hypertrophy[J]. Physiologia Plantarum, 169(1): 69-43.
|
[7] |
GYSSELS G, 2005. Impact of plant roots on the resistance of soils to erosion by water: A review[J]. Progress in Physical Geography, 29(2): 189-217.
|
[8] |
KLUDZE H K, DELAUNE R D, PATRICK W H, 1993. Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Science Society of America Journal, 57(2): 386-391.
|
[9] |
KLUDZE H K, DELAUNE R, PATRICK J R W, 1994. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots[J]. Agronomy Journal, 86(3): 483-487.
|
[10] |
LU H Y, WANG M, ZHOU S, et al., 2024. Chitosan Oligosaccharides Mitigate Flooding Stress Damage in Rice by Affecting Antioxidants, Osmoregulation, and Hormones[J]. Antioxidants, 13(5): 521.
|
[11] |
MORENO S, BEDADA G, RAHIMI Y, et al., 2023. Response to waterlogging stress in wild and domesticated accessions of timothy (Phleum pratense) and its relatives P. alpinum and P. nodosum[J]. Plants, 12(23): 4033.
|
[12] |
PATEL K M, PANDEY S, BURRITT J D, et al., 2019. Plant responses to low-oxygen stress: Interplay between ROS and NO signaling pathways[J]. Environmental and Experimental Botany, 161: 134-142.
|
[13] |
RAMASAMY S, TEN BERGE H F M, PURUSHOTHAMAN S, 1997. Yield formation in rice in response to drainage and nitrogen application[J]. Field Crops Research, 51(1-2): 65-82.
|
[14] |
WAN J, XIAO H L, HE J H, et al., 2013. Research on the slope protection mechanism of roots[J]. Research Journal of Applied Sciences, Engineering and Technology, 6(13): 2429-2435.
|
[15] |
WANG X Y, ZHU H, YAN B X, et al., 2020. Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants[J]. Environment International, 138: 105628.
|
[16] |
WU H P, GAO X F, WU M, et al., 2020. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment: A case study in Xiantao, China[J]. Journal of Cleaner Production, 277: 123384.
|
[17] |
YANG J X, TAM NORA F Y, YE Z H, 2014. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J]. Plant and Soil, 374(1-2): 815-828.
|
[18] |
ZHANG R P, ZHANG N N, ZHANG L, et al., 2023a. Effects of submergence stress on germination and seedling growth of direct-seeded rice and evaluation of submergence tolerance[J]. Paddy and Water Environment, 21(4): 523-538.
|
[19] |
ZHANG J Y, YAN Q H, BAI G, et al., 2023b. Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland[J]. Environmental Research, 239(7): 117377.
|
[20] |
ZHANG X C, SHABALA S, KOUTOULIS, et al., 2015. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots[J]. Plant and Soil, 394(1-2): 355-372.
|
[21] |
ZHAO W G, XIAO J B, LIN G, et al., 2024. Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form[J]. Journal of Plant Research, 137(2): 279-291.
DOI
PMID
|
[22] |
ZHOU W G, CHEN F, MENG Y, et al., 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation[J]. Plant Physiology and Biochemistry, 148: 228-236.
DOI
PMID
|
[23] |
陈贵, 陈梅, 朱静娜, 等, 2020. 籼粳杂交稻高效吸收氮素的相关机理研究[J]. 土壤, 52(6): 1113-1119.
|
|
CHEN G, CHEN M, ZHU J N, et al., 2020. Mechanism of high N uptake efficiency in Indica-japonica hybrid rice[J]. Soils, 52(6): 1113-1119.
|
[24] |
高世博, 2023. 酸碱胁迫下人工湿地植物的生理应激和污染物去除特征[D]. 西安: 西安建筑科技大学:89.
|
|
GAO S B, 2023. The responses of plant and characteristics of pollutant removal in subsurface flow wetland under acid-base stresss[D]. Xi’an: Xi’an University of Architecture and Technology:89.
|
[25] |
李锋, 马远, 2021. 城市生态系统修复研究进展[J]. 生态学报, 41(23): 9144-9153.
|
|
LI F, MA Y, 2021. Research progress of urban ecosystem restoration[J]. Acta Ecologica Sinica, 41(23): 9144-9153.
|
[26] |
刘定辉, 李勇, 2003. 植物根系提高土壤抗侵蚀性机理研究[J]. 水土保持学报, 17(3): 34-37, 117.
|
|
LIU D H, LI Y, 2023. Mechanism of plant roots improving resistance of soil to concentrated flow erosion[J]. Journal of Soil and Water Conservation, 17(3): 34-37, 117.
|
[27] |
聂功平, 陈敏敏, 杨柳燕, 等, 2021. 植物响应淹水胁迫的研究进展[J]. 中国农学通报, 37(18): 57-64.
DOI
|
|
NIE G P, CHEN M M, YANG L Y, et al., 2021. Plant response to waterlogging stress: Research progress[J]. Chinese Agricultural Science Bulletin, 37(18): 57-64.
DOI
|
[28] |
饶洁, 唐强, 冯韫, 等, 2024. 三峡水库消落带生境特征与植被恢复模式[J]. 水土保持学报, 38(1): 310-318.
|
|
RAO J, TANG Q, FENG Y, et al., 2024. Habitat condition and vgetation restoration patterns in the water level fluctuation zone of the Three Gorges reservoir[J]. Journal of Soil and Water Conservation, 38(1): 310-318.
|
[29] |
孙津, 凌凯, 2024. 不同植物根系对岸坡土体抗剪强度的影响[J]. 水电能源科学, 42(2): 192-196.
|
|
SUN J, LING K, 2024. Influence of different plant root on shear strength of bank slope soil[J]. Water Resources and Power, 42(2): 192-196.
|
[30] |
汤思文, 曹昀, 许令明, 等, 2019. 香蒲对淹水生境的适应性模拟实验[J]. 湿地科学, 17(5): 582-592.
|
|
TANG S W, CAO Y, XU L M, et al., 2019. Simulation experiment on adaptation of Typha orientalis to flooded habitat[J]. Wetland Science, 17(5): 582-592.
|
[31] |
姚子惠, 2022. 氮胁迫下垂直潜流人工湿地植物的生理响应与污染物去除特性[D]. 西安: 西安建筑科技大学:91.
|
|
YAO Z H, 2022. Physiological response and pollutant removal characteristics of vertical subsurface flow constructed wetlands under nitrogen stress[D]. Xi’an: Xi’an University of Architecture and Technology:91.
|
[32] |
张新梅, 董晓英, 陈荣府, 等, 2013. 气相色谱法测定水稻根系痕量乙烯释放的影响因素[J]. 江苏农业学报, 29(4): 722-726.
|
|
ZHANG X M, DONG X Y, CHEN R F, et al., 2013. Influencing factors in determination of trace ethylene evolution of rice roots by gas chromatography[J]. Jiangsu Journal of Agricultural Sciences, 29(4): 722-726.
|
[33] |
郑晓岚, 鲍玉海, 贺秀斌, 等, 2023. 周期性淹水对水库消落带根土复合体抗剪性能的影响[J]. 水土保持学报, 37(5): 111-120.
|
|
ZHENG X L, BAO Y H, HE X B, et al., 2023. Effects of periodic flooding on shear resistance of root-soil composite in the water-level fluctuation zone[J]. Journal of Soil and Water Conservation, 37(5): 111-120.
|