Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2387-2394.DOI: 10.16258/j.cnki.1674-5906.2021.12.014
• Research Articles • Previous Articles Next Articles
ZHU Qian1,2,3(), ZHANG Naiming1, XIA Yunsheng1, YANG Xu2,3, ZHANG Chuanguang2,3,*(
)
Received:
2021-03-03
Online:
2021-12-18
Published:
2022-01-04
Contact:
ZHANG Chuanguang
朱倩1,2,3(), 张乃明1, 夏运生1, 杨旭2,3, 张传光2,3,*(
)
通讯作者:
张传光
作者简介:
朱倩(1997年生),女,硕士研究生,主要从事水土保持与荒漠化防治方面的研究。E-mail: 1341093475@qq.com
基金资助:
CLC Number:
ZHU Qian, ZHANG Naiming, XIA Yunsheng, YANG Xu, ZHANG Chuanguang. Study on the Adsorption Effect of 5 Activated Biochars on Low-concentration Nitrogen and Phosphorus in Water[J]. Ecology and Environment, 2021, 30(12): 2387-2394.
朱倩, 张乃明, 夏运生, 杨旭, 张传光. 5种活性生物炭对水体低浓度氮、磷吸附效果研究[J]. 生态环境学报, 2021, 30(12): 2387-2394.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.014
采样点编号 Sampling point number | pH | ρ(N)/ (mg∙L-1) | ρ(P)/ (mg∙L-1) | ρ(COD)/ (mg∙L-1) |
---|---|---|---|---|
1# | 8.05±0.15 | 7.42±0.12 | 0.34±0.03 | 34.42±0.03 |
2# | 7.69±0.02 | 7.5±0.09 | 0.4±0.12 | 36.38±0.04 |
3# | 7.58±0.05 | 14.58±0.31 | 1.02±0.01 | 60.35±0.04 |
4# | 7.63±0.07 | 13.36±0.11 | 0.85±0.00 | 51.29±0.00 |
5# | 7.81±0.01 | 13.87±0.04 | 0.78±0.02 | 44.73±0.01 |
6# | 7.71±0.21 | 12.39±0.02 | 0.66±0.09 | 42.80±0.02 |
Table 1 Water basic properties of Xin yun liang river
采样点编号 Sampling point number | pH | ρ(N)/ (mg∙L-1) | ρ(P)/ (mg∙L-1) | ρ(COD)/ (mg∙L-1) |
---|---|---|---|---|
1# | 8.05±0.15 | 7.42±0.12 | 0.34±0.03 | 34.42±0.03 |
2# | 7.69±0.02 | 7.5±0.09 | 0.4±0.12 | 36.38±0.04 |
3# | 7.58±0.05 | 14.58±0.31 | 1.02±0.01 | 60.35±0.04 |
4# | 7.63±0.07 | 13.36±0.11 | 0.85±0.00 | 51.29±0.00 |
5# | 7.81±0.01 | 13.87±0.04 | 0.78±0.02 | 44.73±0.01 |
6# | 7.71±0.21 | 12.39±0.02 | 0.66±0.09 | 42.80±0.02 |
生物质 Biomass | 基本性质 Elementary properties | ||||||
---|---|---|---|---|---|---|---|
活性生物炭 Activated biochar | 普通生物炭 Common biochar | ||||||
pH | BET/(m2∙g-1) | pH | BET/(m2∙g-1) | w(N)/(mg∙kg-1) | w(P)/(mg∙kg-1) | ||
甘蔗渣 Sugarcane bagasse | 6.21±0.00 | 1225.89±21.21 | 8.31±0.11 | 128.51±2.3 | 6.21±0.00 | 1225.89±21.21 | |
紫茎泽兰 Crofton weed | 5.95±0.01 | 1260.50±14.31 | 10.71±0.02 | 132.1±0.51 | 5.95±0.01 | 1260.50±14.31 | |
咖啡壳 Coffee shell | 5.51±0.03 | 1246.09±18.76 | 9.21±0.12 | 347.2±0.17 | 5.51±0.03 | 1246.09±18.76 | |
锯木屑 Sawdust | 5.23±0.01 | 1534.87±23.21 | 8.48±0.08 | 145.7±1.53 | 5.23±0.01 | 1534.87±23.21 | |
烟梗 Tobacco stem | 5.56±0.04 | 1208.50±15.63 | 10.56±0.06 | 221.5±2.65 | 5.56±0.04 | 1208.50±15.63 |
Table 2 Elementary properties of different biochar
生物质 Biomass | 基本性质 Elementary properties | ||||||
---|---|---|---|---|---|---|---|
活性生物炭 Activated biochar | 普通生物炭 Common biochar | ||||||
pH | BET/(m2∙g-1) | pH | BET/(m2∙g-1) | w(N)/(mg∙kg-1) | w(P)/(mg∙kg-1) | ||
甘蔗渣 Sugarcane bagasse | 6.21±0.00 | 1225.89±21.21 | 8.31±0.11 | 128.51±2.3 | 6.21±0.00 | 1225.89±21.21 | |
紫茎泽兰 Crofton weed | 5.95±0.01 | 1260.50±14.31 | 10.71±0.02 | 132.1±0.51 | 5.95±0.01 | 1260.50±14.31 | |
咖啡壳 Coffee shell | 5.51±0.03 | 1246.09±18.76 | 9.21±0.12 | 347.2±0.17 | 5.51±0.03 | 1246.09±18.76 | |
锯木屑 Sawdust | 5.23±0.01 | 1534.87±23.21 | 8.48±0.08 | 145.7±1.53 | 5.23±0.01 | 1534.87±23.21 | |
烟梗 Tobacco stem | 5.56±0.04 | 1208.50±15.63 | 10.56±0.06 | 221.5±2.65 | 5.56±0.04 | 1208.50±15.63 |
生物质 Biomass | 孔径 Aperture | 活性生物炭孔径分布 Pore size distribution of biological activated biochar/% | 普通生物炭孔径分布 Pore size distribution of common biochar/% |
---|---|---|---|
甘蔗渣 Sugarcane bagasse | 微孔 Micropore | 0.05±0.00 | 59.9±0.01 |
过渡孔 Transition pore | 99.5±0.06 | 34.3±0.01 | |
紫茎泽兰 Crofton weed | 微孔 Micropore | 1.01±0.01 | — |
过渡孔 Transition pore | 98.8±0.15 | — | |
咖啡壳 Coffee shell | 微孔 Micropore | 44.2±0.00 | 87.7±0.01 |
过渡孔 Transition pore | 54.1±0.01 | 11.8±0.00 | |
锯木屑 Sawdust | 微孔 Micropore | 26.9±0.01 | — |
过渡孔 Transition pore | 72.9±0.01 | — | |
烟梗 Tobacco stem | 微孔 Micropore | 24.2±0.01 | 21.5±0.00 |
过渡孔 Transition pore | 63.4±0.03 | 73.2±0.01 |
Table 3 Pore size distribution of different biochar
生物质 Biomass | 孔径 Aperture | 活性生物炭孔径分布 Pore size distribution of biological activated biochar/% | 普通生物炭孔径分布 Pore size distribution of common biochar/% |
---|---|---|---|
甘蔗渣 Sugarcane bagasse | 微孔 Micropore | 0.05±0.00 | 59.9±0.01 |
过渡孔 Transition pore | 99.5±0.06 | 34.3±0.01 | |
紫茎泽兰 Crofton weed | 微孔 Micropore | 1.01±0.01 | — |
过渡孔 Transition pore | 98.8±0.15 | — | |
咖啡壳 Coffee shell | 微孔 Micropore | 44.2±0.00 | 87.7±0.01 |
过渡孔 Transition pore | 54.1±0.01 | 11.8±0.00 | |
锯木屑 Sawdust | 微孔 Micropore | 26.9±0.01 | — |
过渡孔 Transition pore | 72.9±0.01 | — | |
烟梗 Tobacco stem | 微孔 Micropore | 24.2±0.01 | 21.5±0.00 |
过渡孔 Transition pore | 63.4±0.03 | 73.2±0.01 |
[1] | CHINTALA R, SCHUMACHER T E, MCDONALD L M, et al., 2014. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean Soil Air Water A Journal of Sustainability & Environmental Safety, 42(5): 626-634. |
[2] |
FINK G, ALCAMOl J, FLORKE M, et al., 2018. Phosphorus loadings to the world's largest lakes: sources and trends[J]. Global Biogeochemical Cycles, 32(4): 617-634.
DOI URL |
[3] |
LISE B, STEPHEN J, MARGERET G, et al., 2019. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater[J]. Ecological Engineering, DOI: 10.1016/j.ecoena.2019.100005.
DOI |
[4] |
LU Z D, SUN W J, LI C, et al., 2020. Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance[J]. Water Research, DOI: 10.1016/j.watres.2020.115768.
DOI |
[5] |
NOVAIS S V, MARIANA D O Z, MATHEUS S C B, et al., 2018. Phosphorus removal from eutrophic water using modified biochar[J]. Science of the Total Environment, 633: 825-835.
DOI URL |
[6] | 高原, 2017. 浒苔基高比表面积活性炭的制备及其性能研究[D]. 济南: 山东大学: 1-192. |
GAO Y, 2017. Preparation and properties of entermorpha based activated carbon with high specific surface area[D]. Ji’nan: Shandong University: 1-192. | |
[7] | 黄安香, 杨定云, 杨守禄, 等, 2020. 改性生物炭对土壤重金属污染修复研究进展[J]. 化工进展, 39(12): 5266-5274. |
HUANG A X, YANG D Y, YANG S L, et al., 2020. Advance in remediation of heavy metal pollution in soil by modified biochar[J]. Chemical Industry and Engineering Progess, 39(12): 5266-5274. | |
[8] | 杭嘉祥, 李法云, 梁晶, 等, 2020. 镁改性芦苇生物炭对水环境中磷酸盐的吸附特性[J]. 生态环境学报, 29(6): 1235-1244. |
HANG J X, LI F Y, LIANG J, et al., 2020. The characteristics of phosphate adsorption in water environment by magnesium modified biochar from wetland reed[J]. Ecology and Environmental Sciences, 29(6): 1235-1244. | |
[9] | 李飞跃, 桂向阳, 刘晨, 等, 2018. 改性生物炭催化过硫酸盐脱色金橙Ⅱ[J]. 环境污染与防治, 40(11): 1207-1213. |
LI F Y, GUI X Y, LIU C, et al., 2018. Decoloration of dye acid orange Ⅱ by modified biochar catalyzed persulfate[J]. Environmental Pollution and Prevention, 40(11): 1207-1213. | |
[10] | 彭启超, 刘小华, 罗培宇, 等, 2019. 不同原料生物炭对氮、磷、钾的吸附和解吸特性[J]. 植物营养与肥料学报, 25(10): 1763-1772. |
PENG Q C, LIU X H, LUO P Y, et al., 2019. Adsorption and desorption characteristics of nitrogen, phosphorus and potassium by biochars from different raw materials[J]. Journal of Plant Nutrition and Fertilizer, 25(10): 1763-1772. | |
[11] | 商中省, 涂佳勇, 蔡毅猛, 等, 2020. 高锰酸钾改性核桃壳基生物炭对水溶液中Cu2+的吸附性能[J]. 天津科技大学学报, 35(5): 25-31, 65. |
SHANG Z X, TU J Y, CAI Y M, et al., 2020. Adsorption of Cu2+ from Aqueous Solution with Walnut Shell Biochar Modifiedby KMnO4[J]. Journal of Tianjin University of Science & Technology, 35(5): 25-31, 65. | |
[12] | 尚璐, 2019. 改性生物炭吸附水中氮磷性能及其资源化研究[D]. 广州: 华南理工大学: 1-84. |
SHANG L, 2019. Study on Ammonium and phosphate Adsorption Properties and Resource Recovery of Modified Biochar in Aqueous Solution[D]. Guangzhou: South China University of Technology: 1-84. | |
[13] | 宋婷婷, 赖欣, 王知文, 等, 2018. 不同原料生物炭对铵态氮的吸附性能研究[J]. 农业环境科学学报, 37(3): 576-584. |
SONG T T, LAI X, WANG Z W, et al., 2018. Adsorption of ammonium nitrogen by biochars produced from different biomasses[J]. Journal of Agro-Environment Science, 37(3): 576-584. | |
[14] | 索桂芳, 吕豪豪, 汪玉瑛, 等, 2018. 不同生物炭对氮的吸附性能[J]. 农业环境科学学报, 37(6): 1193-1202. |
SUO G F, LV H H, WANG Y Y, et al., 2018. Study on the adsorption properties of nitrogen by different biochars[J]. Journal of Agro-Environment Science, 37(6): 1193-1202. | |
[15] | 汪怡, 李莉, 宋豆豆, 等, 2020. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[J]. 农业环境科学学报, 39(6): 1303-1313. |
WANG Y, LI L, SONG D D, et al., 2020. Copper and lead ion adsorption characteristics of modified corn stalk biochars[J]. Journal of Agro-Environment Science, 39(6): 1303-1313. | |
[16] | 王瑞峰, 周亚男, 孟海波, 等, 2016. 不同改性生物炭对溶液中Cd的吸附研究[J]. 中国农业科技导报, 18(6): 103-111. |
WANG R F, ZHOU Y N, MENG H B, et al., 2016. Adsorption of Cd in solution by different modified biochar[J]. Journal of Agricultural Science and Technology, 18(6): 103-111. | |
[17] | 肖雨涵, 2019. 多级生态库塘-湿地对低污染水体中氮磷去除效果研究[D]. 苏州: 苏州科技大学: 1-77. |
XIAO Y H, 2019. Removal of Nitrogen and Phosphorus in Low-pollute Water by Multi-stage Pondwetland[D]. Suzhou: Suzhou University of Science and Technology: 1-77. | |
[18] | 熊静, 王蓓丽, 刘渊文, 等, 2019. 生物炭去除土壤重金属的研究进展[J]. 环境工程, 37(9): 182-187. |
XIONG J, WANG B L, LIU Y W, et al., 2019. Research progress in removal effect of biochar on heavy metal in soil[J]. Environmental Engineering, 37(9): 182-187. | |
[19] | 徐祺, 王三反, 孙百超, 2019. 超声改性生物炭对染料废水的吸附特性[J]. 水处理技术, 45(3): 43-47, 54. |
XU Q, WANG S F, SUN B C, 2019. Adsorption properties of dye wastewater by ultrasonic modified biochar[J]. Water Treatment Technology, 45(3): 43-47, 54. | |
[20] | 张亚茹, 张英, 史祥利, 等, 2020. pH对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响[J]. 农业资源与环境学报, 37(4): 552-561. |
ZHANG Y R, ZHANG Y, SHI X L, et al., 2020. Effect of pH on biochar adsorption of norfloxacin and sulfamethoxazole[J]. Journal of Agricultural Resources and Environment, 37(4): 552-561. | |
[21] | 赵洁, 贺宇宏, 张晓明, 等, 2020. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 38(6): 28-34. |
ZHAO J, HE Y H, ZHANG X M, et al., 2020. Effect on Cr (Ⅵ) adsorption Performance of adsorption performance of ACID-BASE Modified biochar[J]. Environmental Engineering, 38(6): 28-34. | |
[22] | 郑宁捷, 唐登勇, 胡洁丽, 等, 2018. 混合改性芦苇生物炭对水中磷酸盐的吸附特性研究[J]. 中国农村水利水电 (6): 97-101, 107. |
ZHENG N J, TANG D Y, HU J L, et al., 2018. Adsorption characteristics of phosphate in water by mixed modified reed biochar[J]. China Rural Water Conservancy and Hydropowe (6): 97-101, 107. | |
[23] | 朱艳, 肖清波, 奚永兰, 等, 2020. 改性生物炭制备条件对磷吸附性能的影响[J]. 生态环境学报, 29(9): 1897-1903. |
ZHU Y, XIAO Q B, XI Y L, et al., 2020. Effect of preparation conditions on the phosphorus adsorption capacities of modified biochar[J]. Ecology and Environmental Sciences, 29(9): 1897-1903. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[3] | XIAO Bo, WANG Shaojun, XIE Lingling, WANG Zhengjun, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, LAN Mengjie, YANG Shengqiu. Effect of Ant Nesting Activity on Soil Nitrogen Component Allocation in the Xishuangbanna Tropical Forests [J]. Ecology and Environment, 2023, 32(6): 1026-1036. |
[4] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[5] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[6] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[7] | WU Yarui, WANG Meijing, WANG Tao, YANG Meihuan. Effect of COVID-19 on Temporal and Spatial Distribution of NO2 Concentration and Socio-Economic Life: A Case Study of Shaanxi Province [J]. Ecology and Environment, 2023, 32(3): 514-524. |
[8] | ZHANG Guangyi, ZHANG Jiatao, WANG Xiaowei. Phosphorus Speciation Distribution and Release in Lake Sediment Microbial Fuel Cells [J]. Ecology and Environment, 2023, 32(3): 590-598. |
[9] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[10] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[11] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[12] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[13] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[14] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[15] | XIANG Xing, MAN Baiying, ZHANG Junzhong, LUO Yang, MAO Xiaotao, ZHANG Chao, SUN Binghua, WANG Xi. Vertical Distribution of Bacterial Community and Functional Groups Mediating Nitrogen Cycling in Mount Huangshan, Anhui, China [J]. Ecology and Environment, 2023, 32(1): 56-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn