Ecology and Environment ›› 2023, Vol. 32 ›› Issue (4): 776-783.DOI: 10.16258/j.cnki.1674-5906.2023.04.015
• Research Articles • Previous Articles Next Articles
FENG Shuna(), LÜ Jialong, HE Hailong(
)
Received:
2023-02-07
Online:
2023-04-18
Published:
2023-07-12
Contact:
HE Hailong
通讯作者:
何海龙
作者简介:
冯树娜(1998年生),女,硕士研究生,主要研究方向土壤修复。E-mail: fsn2945074751@nwafu.edu.cn
基金资助:
CLC Number:
FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil[J]. Ecology and Environment, 2023, 32(4): 776-783.
冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.04.015
w(粒径组成)/% | pH值 | w(有机质)/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 电导率/ (mS∙cm−1) | w(总汞)/ (mg∙kg−1) | w(移动性汞)/ (mg∙kg−1) | w(半移动性汞)/ (mg∙kg−1) | w(不移动性汞)/ (mg∙kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
砂粒 | 粉粒 | 黏粒 | ||||||||
30.10 | 55.11 | 14.79 | 8.16 | 11.33 | 21.17 | 0.25 | 6.89 | 0.18 | 6.47 | 0.24 |
Table 1 Basic physical and chemical properties of loess soil
w(粒径组成)/% | pH值 | w(有机质)/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 电导率/ (mS∙cm−1) | w(总汞)/ (mg∙kg−1) | w(移动性汞)/ (mg∙kg−1) | w(半移动性汞)/ (mg∙kg−1) | w(不移动性汞)/ (mg∙kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
砂粒 | 粉粒 | 黏粒 | ||||||||
30.10 | 55.11 | 14.79 | 8.16 | 11.33 | 21.17 | 0.25 | 6.89 | 0.18 | 6.47 | 0.24 |
模型 | 非标准化系数 | 标准化系数 | t | 显著性 | VIF | ||
---|---|---|---|---|---|---|---|
B | 标准误差 | β | |||||
常量 | −17.008 | 14.593 | — | −1.137 | 0.270 | — | |
浓度 | 243.307 | 60.324 | 0.591 | 4.039 | 0.001 | 1.000 | |
浸提时间 | 1.0107 | 0.347 | 0.471 | 3.195 | 0.005 | 1.014 | |
液土比 | 1.321 | 1.201 | 0.162 | 1.100 | 0.286 | 1.014 |
Table 2 Regression analysis of KI ratio on Hg(Ⅱ) removal rate
模型 | 非标准化系数 | 标准化系数 | t | 显著性 | VIF | ||
---|---|---|---|---|---|---|---|
B | 标准误差 | β | |||||
常量 | −17.008 | 14.593 | — | −1.137 | 0.270 | — | |
浓度 | 243.307 | 60.324 | 0.591 | 4.039 | 0.001 | 1.000 | |
浸提时间 | 1.0107 | 0.347 | 0.471 | 3.195 | 0.005 | 1.014 | |
液土比 | 1.321 | 1.201 | 0.162 | 1.100 | 0.286 | 1.014 |
模型 | 准一级动力学方程 | 准二级动力学方程 | Elovich方程 | 颗粒内扩散方程 | 双常数方程 |
---|---|---|---|---|---|
q=qe(1−e−kx) | q=kqe2x/(1+qekx) | q=a+blnt | q=a+t−1/b | lnq=a+blnt | |
参数qe/a | 4.093 | 5.134 | 1.307 | 0.003817 | 0.08208 |
参数k/b | 0.1747 | 0.03402 | 2.13 | 0.41 | |
系数r2 | 0.9634 | 0.9584 | 0.8793 | 0.9149 | 0.9173 |
Table 3 Fitting parameters of kinetic model equation of Hg(Ⅱ) desorption in loess soil
模型 | 准一级动力学方程 | 准二级动力学方程 | Elovich方程 | 颗粒内扩散方程 | 双常数方程 |
---|---|---|---|---|---|
q=qe(1−e−kx) | q=kqe2x/(1+qekx) | q=a+blnt | q=a+t−1/b | lnq=a+blnt | |
参数qe/a | 4.093 | 5.134 | 1.307 | 0.003817 | 0.08208 |
参数k/b | 0.1747 | 0.03402 | 2.13 | 0.41 | |
系数r2 | 0.9634 | 0.9584 | 0.8793 | 0.9149 | 0.9173 |
指标 | 黏粒含量 | pH值 | 有机质 | 阳离子交换量 | 电导率 |
---|---|---|---|---|---|
总汞 | 0.479 | −0.750** | −0.073 | 0.692* | −0.437 |
移动性汞 | 0.414 | −0.832** | −0.224 | 0.764** | −0.461 |
半移动性汞 | 0.625* | −0.838** | −0.269 | 0.722** | −0.512 |
不移动性汞 | 0.175 | −0.405 | −0.202 | 0.230 | 0.201 |
Table 4 Correlation between soil physicochemical properties and Hg(Ⅱ) content and morphology
指标 | 黏粒含量 | pH值 | 有机质 | 阳离子交换量 | 电导率 |
---|---|---|---|---|---|
总汞 | 0.479 | −0.750** | −0.073 | 0.692* | −0.437 |
移动性汞 | 0.414 | −0.832** | −0.224 | 0.764** | −0.461 |
半移动性汞 | 0.625* | −0.838** | −0.269 | 0.722** | −0.512 |
不移动性汞 | 0.175 | −0.405 | −0.202 | 0.230 | 0.201 |
[1] | ANDONI M, IOVI A, NEGRA P, et al., 2008. Mercury removing from the contamined soil using KI solution, The pH influence[J]. Revista De Chimie, 59(7): 779-781. |
[2] |
DERMONT G, BERGERON M, MERCIER G, et al., 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 152(1): 1-31.
DOI PMID |
[3] |
DO CARMO D L, SILA C A, 2016. Electrical conductivity and corn growth in contrasting soils affected by liming application at various levels[J]. Pesquisa Agropecuaria Brasileira, 51(10): 1762-1772.
DOI URL |
[4] |
DRISCOLL C T, MASON R P, CHAN H M, et al., 2013. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science Technology, 47(10): 4967-4983.
DOI URL |
[5] |
FERNANDEZ-MARTINEZ R, LORDO J, ORDONEZ A, et al., 2005. Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain)[J]. Science of the Total Environment, 346(1-3): 200-212.
DOI URL |
[6] |
FINZGAR N, LESTAN D, 2008. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution[J]. Chemosphere, 73(9): 1484-1491.
DOI PMID |
[7] |
JIANG H, ZHANG L, ZHENG B H, et al., 2012. Role of organic acids in desorption of mercury from contaminated soils in eastern shandong province, China[J]. Chinese Geographical Science, 22(4): 414-421.
DOI URL |
[8] |
KHALID S, SHAHILD M, NIAZI N K, et al., 2017. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 182: 247-268.
DOI URL |
[9] |
LI P, FENG X B, QIU G L, et al., 2009. Mercury pollution in Asia: A review of the contaminated sites[J]. Journal of Hazardous Materials, 168(2): 591-601.
DOI URL |
[10] |
LI Y Y, LU C, ZHU N L, et al., 2022. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice[J]. Journal of Hazardous Materials, 430: 128447.
DOI URL |
[11] | MARCHUK S, MARCHUK A, 2018. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils[J]. Soil & Tillage Research, 182: 35-44. |
[12] |
OZER A, OZER D, EKIZ H I, 2004. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata[J]. Adsorption-Journal of the International Adsorption Society, 10(4): 317-326.
DOI URL |
[13] |
REDDY K R, ALA P R, 2005. Electrokinetic remediation of metal- contaminated field soil[J]. Separation Science and Technology, 40(8): 1701-1720.
DOI URL |
[14] |
WANG J X, FENG X B, ANDERSON C W N, et al., 2012. Implications of mercury speciation in thiosulfate treated plants[J]. Environmental Science & Technology, 46(10): 5361-5368.
DOI URL |
[15] |
WANG Y P, LIN Q T, XIAO R B, et al., 2020. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid[J]. Ecotoxicology and Environmental Safety, 206: 111179.
DOI URL |
[16] |
WASAY S A, ARNFALK P, TOKUNAGA S, 1995. Remediation of a soil polluted by mercury with acidic potassiumiodide[J]. Journal of Hazardous Materials, 44(1): 93-102.
DOI URL |
[17] |
WASAY S A, BARRINGTON S, TOKUNAGA S, 2001. Organic acids for the in situ remediation of soils polluted by heavy metals: Soil flushing in columns[J]. Water Air and Soil Pollution, 127(1-4): 301-314.
DOI URL |
[18] | WEI Z B, CHEN Y H, LI X Q, et al., 2022. Remediation of heavy metal contaminated farmland soil by biodegradable chelating agent GLDA[J]. Applied Sciences-Basel, 12(18): 9277. |
[19] | WUANA R A, OKIEIMEN F E, IMBORVUNGU J A, 2010. Removal of heavy metals from a contaminated soil using organic chelating acids[J]. International Journal of Environmental Science & Technology, 7(3): 485-496. |
[20] |
XU J Y, KLEGA D B, BIESTER H, et al., 2014. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil[J]. Chemosphere, 109: 99-105.
DOI PMID |
[21] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 25-186. |
BAO S D, 2000. Soil agrochemical analysis[M]. The third edition. Beijng: China Agricultural Press: 25-186. | |
[22] | 陈宗英, 张焕祯, 2012. 汞污染土壤的萃取修复技术研究[J]. 地学前缘, 19(6): 230-235. |
CHEN Z Y, ZHANG H Z, 2012. Research on extract remediation technology of mercury-contaminated soils[J]. Earth Science Frontiers, 19(6): 230-235. | |
[23] | 董汉英, 仇荣亮, 赵芝灏, 等, 2010. 工业废弃地多金属污染土壤组合淋洗修复技术研究[J]. 土壤学报, 47(6): 1126-1133. |
DONG H Y, QIU R L, ZHAO Z H, et al., 2010. Sequential elution technique for remediation of multi-metal contaminated brownfield soils[J]. Acta Pedologica Sinica, 47(6): 1126-1133. | |
[24] | 高震国, 钟瑞林, 杨帅, 等, 2022. HYDRUS模型在中国的最新研究与应用进展[J]. 土壤, 54(2): 219-231. |
GAO Z G, ZHONG R L, YANG S, et al., 2022. Recent progresses in research and application of HYDRUS modal in Chian[J]. Soils, 54(2): 219-231. | |
[25] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报 (2014年4月17日)[J]. 环境教育 (6): 8-10. |
Minisry of Ecology and Environment of the People’s Republic of China, Minisry of Land and Resources of the People’s Republic of China, 2014. Bulletin of the national survey on soil pollution (April 17, 2014)[J]. Environmental Education (6): 8-10. | |
[26] | 吕晶晶, 石兰君, 窦艳艳, 等, 2022. 基于HYDRUS-1D的改良土壤渗滤处理污废水模型研究[J]. 环保科技, 28(6): 1-5, 16. |
LÜ J J, SHI L J, DOU Y Y, et al., 2022. Study on modified soil infiltration system model for wastewater treatment based on HYDRUS-1D[J]. Environmental Science and Technology, 28(6): 1-5, 16.
DOI URL |
|
[27] | 邵乐, 史学峰, 李昌武, 等, 2019. 化学氧化强化化学淋洗修复汞污染土壤的试验研究[J]. 湖南有色金属, 35(6): 54-58. |
SHAO L, SHI X F, LI C W, et al., 2019. Experimental study on remediation of mercury contaminated soil by chemical oxidation enhanced chemical leaching[J]. Hunan Nonferrous Metals, 35(6): 54-58. | |
[28] | 万朔阳, 吴勇, 唐学芳, 等, 2020. 基于HYDRUS-1D对西坝镇农田土壤重金属迁移模拟及空间解析[J]. 科学技术与工程, 20(2): 854-859. |
WAN S Y, WU Y, TANG X F, et al., 2020. Simulation and spatial analysis of heavy metal migration in xiba town soil based on HYDRUS-1D[J]. Science Technology and Engineering, 20(2): 854-859. | |
[29] | 王娜, 2019. 汞污染土壤的修复技术概述[J]. 河南科技 (8): 156-158. |
WANG N, 2019. Overview of remediation Techniques for mercury contaminated soil[J]. Henan Science and Technology (8): 156-158. | |
[30] | 杨文俊, 辜娇峰, 周航, 等, 2019. 农田土壤重金属淋洗剂筛选与效应分析[J]. 水土保持学报, 33(4): 321-328. |
YANG W J, GU J F, ZHOU H, et al., 2019. Screening and effect analysis of eluents rmoving heavy metals from paddy soil[J]. Journal of Soil and Water Conservation, 33(4): 321-328. | |
[31] | 姚瑶, 张世熔, 王怡君, 等, 2018. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 12(7): 2039-2046. |
YAO Y, ZHANG S R, WANG Y J, et al., 2018. Effects of different environmentally friendly washing agents on removal of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 12(7): 2039-2046. | |
[32] | 国家环境保护总局, 国家质量监督检验检疫总局, 2007. 危险废物鉴别标准——浸出毒物鉴别: GB 5085.3—2007[S]. 国家环境保护总局, 国家质量监督检验检疫总局: 5. |
State Environmental Protection Administration, State Administration of Quality Supervision, Inspection and Quarantine, 2007. Identification Standards for Hazardous Wastes: Identification for Extraction Toxiciy: GB 5085.3—2007[S]. State Administration of Quality Supervision, Inspection and Quarantine: 5. | |
[33] | 生态环境部,国家市场监督管理总局:2018. 土壤环境质量——农用地土壤污染风险管控标准 (试行): GB 15618—2018 [S]. 生态环境部, 国家市场监督管理总局: 2. |
Ministry of Ecology and Environment, State Administration for Market Regulation, 2018. Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Ministry of Ecology and Environment, State Administration for Market Regulation: 2. |
[1] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[2] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[3] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[4] | YANG Chong, WANG Chunyan, WANG Wenying, MAO Xufeng, ZHOU Huakun, CHEN Zhe, SUONANJi , JIN Lei, MA Huaqing. Soil Nutrient Characteristics and Quality Evaluation of Alpine Grassland in the Source Area of the Yellow River on the Qinghai Tibet Plateau [J]. Ecology and Environment, 2022, 31(5): 896-908. |
[5] | HAN Xin, YUAN Chunyang, LI Jihong, HONG Zongwen, LIU Xuan, DU Ting, LI Han, YOU Chenming, TAN Bo, ZHU Peng, XU Zhenfeng. Effects of Tree Species and Soil Layers on Soil Extractable Nitrogen Content [J]. Ecology and Environment, 2022, 31(11): 2143-2151. |
[6] | GUO Lifang, YANG Rui, SUN Weimin. Nitrogen-Fixing Bacteria Isolation from Mine Tailings and Their Plant Growth Promoting Properties [J]. Ecology and Environment, 2022, 31(11): 2180-2188. |
[7] | LIU Peiling, LIU Xiaodong, FENG Yingjie, SU Yuqiao, GAN Xianhua, ZHANG Weiqiang. Characteristics of Soil Saturated Hydraulic Conductivity of Water Conservation Forests in the Xinfengjiang Reservoir Area [J]. Ecology and Environment, 2022, 31(10): 1993-2001. |
[8] | JIANG Jing, DENG Jingling, SHENG Guangyao. A Review of Biochar Aging and Its Impact on the Adsorption of Heavy Metals [J]. Ecology and Environment, 2022, 31(10): 2089-2100. |
[9] | XING Shuwen, XU Jiamin, HUANG Bin, GAO Jingting, HAN Li. Effect of Heavy Metal Pollution on the Community Structure and Diversity of Soil Animals in Tea Garden Located in A Tungsten Mining Area [J]. Ecology and Environment, 2021, 30(9): 1903-1915. |
[10] | CHENG Junwei, CAI Shenwen, HUANG Mingqin. Bioconcentration of Heavy Metals in Dominant Plants of Xiangjiang Manganese Mining Area in Guizhou Province [J]. Ecology and Environment, 2021, 30(8): 1742-1750. |
[11] | ZHENG Zhiheng, XIONG Kangning, RONG Li, CHI Yongkuan. Effects of Biological Crusts on Soil Properties in Karst Rocky Desertification Areas of Different Levels [J]. Ecology and Environment, 2021, 30(6): 1202-1212. |
[12] | NIU Xuekui, WU Xueyong, WANG Wei, AI Zhimin, WANG Shuting, HOU Juan, ZHOU Tao. Study on Enrichment Characteristics of Heavy Metals from Dominant Plants Around the Waste Slag Yard of Lead Smelting in A Typical Blast Furnace [J]. Ecology and Environment, 2021, 30(6): 1293-1298. |
[13] | TONG Hui, QIAO Jiangtao, ZHOU Jimei, LEI Qinkai, CHEN Manjia, LIU Chengshuai. Coupled Transformation of Sulfur and Cadmium on Goethite Induced by Sulfate-reducing Bacterium [J]. Ecology and Environment, 2021, 30(5): 1069-1075. |
[14] | RU Shuhua, ZHAO Ouya, HOU Limin, XIAO Guangmin, WANG Ce, SUN Shiyou, ZHANG Guoyin, WANG Ling, LIU Lei. Effects of Eight Kinds of Passivators on Properties and Cadmium Availability in Different Cadmium-contaminated Soil [J]. Ecology and Environment, 2021, 30(10): 2085-2092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn