Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 459-468.DOI: 10.16258/j.cnki.1674-5906.2023.03.004
• Research Articles • Previous Articles Next Articles
QIN Hao1,*(), LI Mengai1, GAO Jin1, CHEN Kailong1, ZHANG Yinbo2, ZHANG Feng3
Received:
2022-10-28
Online:
2023-03-18
Published:
2023-06-02
Contact:
QIN Hao
秦浩1,*(), 李蒙爱1, 高劲1, 陈凯龙1, 张殷波2, 张峰3
通讯作者:
秦浩
作者简介:
秦浩(1989年生),男,副教授,博士,主要研究方向为植被与微生物生态。E-mail: qinhaosx@126.com
基金资助:
CLC Number:
QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain[J]. Ecology and Environment, 2023, 32(3): 459-468.
秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.004
参数 | 低海拔(LA) | 中海拔(MA) | 高海拔(HA) |
---|---|---|---|
群落类型(CT) | 黄刺玫灌丛 | 中国沙棘灌丛 | 鬼箭锦鸡儿 |
样地位置 (LP) | 38.62°N, 112.06°E | 38.92°N, 111.90°E | 38.73°N, 111.85°E |
样地海拔/m | 1368-1392 | 1835-1855 | 2668-2689 |
群落盖度/% | 83.33±6.01ab | 96.67±1.67b | 80±5.00a |
群落高度/cm | 90±10.00b | 180±0.00c | 26.67±3.33a |
物种丰富度(S) | 13.33±1.45ab | 10.67±0.67a | 16.33±0.33b |
植物Simpson指数 | 0.29±0.40a | 0.49±0.01b | 0.50±0.01b |
植物Shannon指数 | 1.76±0.12b | 1.26±0.03a | 1.36±0.01a |
w(土壤TN)/(g∙kg-1) | 1.68±0.15a | 1.45±0.07a | 4.88±1.12b |
w(土壤TP)/(g∙kg-1) | 0.61±0.01b | 0.59±0.01ab | 0.54±0.02a |
w(土壤SOC)/(g∙kg-1) | 20.51±1.01b | 15.27±0.77a | 47.23±1.13c |
土壤pH | 8.23±0.10b | 8.23±0.08b | 5.81±0.09a |
Table 1 Characteristics of shrub communities and soil physicochemical properties at different altitudes
参数 | 低海拔(LA) | 中海拔(MA) | 高海拔(HA) |
---|---|---|---|
群落类型(CT) | 黄刺玫灌丛 | 中国沙棘灌丛 | 鬼箭锦鸡儿 |
样地位置 (LP) | 38.62°N, 112.06°E | 38.92°N, 111.90°E | 38.73°N, 111.85°E |
样地海拔/m | 1368-1392 | 1835-1855 | 2668-2689 |
群落盖度/% | 83.33±6.01ab | 96.67±1.67b | 80±5.00a |
群落高度/cm | 90±10.00b | 180±0.00c | 26.67±3.33a |
物种丰富度(S) | 13.33±1.45ab | 10.67±0.67a | 16.33±0.33b |
植物Simpson指数 | 0.29±0.40a | 0.49±0.01b | 0.50±0.01b |
植物Shannon指数 | 1.76±0.12b | 1.26±0.03a | 1.36±0.01a |
w(土壤TN)/(g∙kg-1) | 1.68±0.15a | 1.45±0.07a | 4.88±1.12b |
w(土壤TP)/(g∙kg-1) | 0.61±0.01b | 0.59±0.01ab | 0.54±0.02a |
w(土壤SOC)/(g∙kg-1) | 20.51±1.01b | 15.27±0.77a | 47.23±1.13c |
土壤pH | 8.23±0.10b | 8.23±0.08b | 5.81±0.09a |
Figure 8 Variation partitioning analysis of plant community characteristics, soil physicochemical properties and altitude on soil bacterial communities composition
[1] |
ACOSTA-MARTINEZ V, TABATABAI M A, 2000. Enzyme activities in a limed agricultural soil[J]. Biology and Fertility of Soils, 31(1): 85-91.
DOI URL |
[2] | BRYANT J A, LAMANNA C, MORLON H, et al., 2008. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(S1): 11505-11511. |
[3] |
CARTWRIGHT J, DZANTOR EK, MOMEN B, 2016. Soil microbial community profiles and functional diversity in limestone cedar glades[J]. Catena, 147: 216-224.
DOI URL |
[4] |
CHAI Y F, CAO Y, YUE M, et al., 2019. Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J]. Frontiers in Microbiology, 10: 895.
DOI PMID |
[5] |
DAMIEN F, JULIAN Y, PENTON R C, 2020. Soil quality shapes the composition of microbial community stress response and core cell metabolism functional genes[J]. Applied Soil Ecology, 148: 103483.
DOI URL |
[6] |
DÍAZ M, QUIROZ-MORENO C, JARRÍN-V P, et al., 2022. Soil bacterial community along an altitudinal gradient in the Sumaco, a Stratovolcano in the Amazon Region[J]. Frontiers in Forests and Global Change, 5: 738568.
DOI URL |
[7] |
DONALD A B, AMAYA M G C, JULIA A M, et al., 2007. Candidatus Chloracidobacterium thermophilum: An Aerobic Phototrophic Acidobacterium[J]. Science, 317(5837): 523-526.
PMID |
[8] |
FENG T J, WEI W, CHEN L D, et al., 2018. Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes[J]. Earth Surface Processes and Landforms, 43(9) 1860-1870.
DOI URL |
[9] |
FIERER N, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 15(10): 579-590.
DOI PMID |
[10] |
FIERER N, JACKSON R B, 2006. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(3): 626-631.
DOI PMID |
[11] | GLISI M, MILINKOVIC M, PESAKOVIC Z, et al., 2013. Microorganisms as biological indicators of soil toxicity in blackberry plantings[J]. Journal of Mountain Agriculture on the Balkans, 16(1): 95-108. |
[12] |
HE Y, LAN Y H, ZHANG H, et al., 2022. Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis[J]. Ecological Indicators, 141(4): 109145.
DOI URL |
[13] |
JIA G M, CAO J, WANG C Y, 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China[J]. Forest Ecology and Management, 217(1): 117-125.
DOI URL |
[14] |
LAUBER C L, STRICKLAND M S, BRADFORD M A, et al., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 40(9): 2407-2415.
DOI URL |
[15] |
LAUS B, INGO S, FABIAN A, et al., 2017. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types[J]. PLoS ONE, 7(8): e43292.
DOI URL |
[16] |
MANZONI S, TAYLOR P, RICHTER A, et al., 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. The New Phytologist, 196(1): 79-91.
DOI URL |
[17] | MOJTABA Z, SHAMSOLLAH A, MAGBOUL S, et al., 2019. Determining the spatial distribution of soil properties using the environmental covariates and multivariate statistical analysis: a case study in semi-arid regions of Iran[J]. Journal of Arid Land, https://doi.org/10.1007/s40333-019-0059-9. |
[18] |
OADES J M, 1988. The retention of organic matter in soils[J]. Biogeochemistry, 5(1): 35-70.
DOI URL |
[19] |
QIANG W, HE L L, ZHANG Y, et al., 2021. Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China[J]. Catena, 202: 105251.
DOI URL |
[20] |
SAMANEH T, SHAMSOLLAH A, NICOLA L, 2020. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem[J]. Applied Soil Ecology, 149: 103514.
DOI URL |
[21] |
SCHMIDT M W I, TORN M S, ABIVEN S, et al., 2011. Persistence of soil organic matter as an ecosystem property[J]. Nature, 478(7367): 49-56.
DOI |
[22] |
SINGH D, TAKAHASHI K, KIM M, et al., 2012. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[J]. Microbial Ecology, 63(2): 429-437.
DOI PMID |
[23] | TIAN Q X, JIANG Y, TANG Y N, et al., 2021. Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient[J]. Frontiers in Forests and Global Change, 12: 646124. |
[24] |
TILMAN D, CASSMAN K G, MATSON P A, et al., 2002. Agricultural sustainability and intensive production practices[J]. Nature, 418(6898): 671-677.
DOI URL |
[25] | WANG Q K, HE T X, WANG S L, et al., 2013. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest[J]. Agricultural and Forest Meteorology, 178-179: 152-160. |
[26] |
WANG R, ZHANG H C, SUN L G, et al., 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 7: 343.
DOI PMID |
[27] |
XIANG X J, GIBBONS S M, LI H, et al., 2018. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem[J]. Plant and Soil, 425(1-2): 539-551.
DOI |
[28] |
ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al., 2015. The Application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 85(2): 133-155.
DOI URL |
[29] |
ZHONG Z K, ZHANG X Y, WANG X, et al., 2020. Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China[J]. Plant and Soil, 448: 183-200.
DOI |
[30] |
白家烨, 刘卫华, 赵冰清, 等, 2018. 芦芽山荷叶坪亚高山草甸生物多样性[J]. 应用生态学报, 29(2): 389-396.
DOI |
BAI J Y, LIU W H, ZHAO B Q, et al., 2018. Biodiversity of subalpine meadow in Heyeping of Luya Mountain, China[J]. Chinese Journal of Applied Ecology, 29(2): 389-396. | |
[31] | 何中声, 谷新光, 江蓝, 等, 2022. 戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素[J]. 北京林业大学学报, 44(7): 107-116. |
HE Z S, GU X G, JIANG L, et al., 2022. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 44(7): 107-116. | |
[32] | 厉桂香, 马克明, 2018. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 38(5): 1521-1529. |
LI G X, MA K M, 2018. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 38(5): 1521-1529. | |
[33] |
刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444.
DOI |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[34] | 田建娟, 2021. 西南山地杜鹃群落沿海拔梯度微生物多样性与植物功能性状关系研究[D]. 昆明: 云南大学. |
TIAN J J, 2021. Relationship between microbial diversity and plant functional traits in Rhododendron communities along an elevation gradient in southwestern mountains[D]. Kunming: Yunnan University. | |
[35] | 王国敏, 曹嘉瑜, 倪健, 2019. 山地土壤微生物地理分布格局及其驱动机制[J]. 地球与环境, 47(4): 565-574. |
WANG G M, CAO J Y, NI J, 2019. Geographical distribution pattern of soil microorganisms in mountains and its driving mechanism[J]. Earth and Environment, 47(4): 565-574. | |
[36] | 王洪亮, 张峰, 2017. 山西芦芽山国家级自然保护区生物多样性保护与管理[M]. 北京: 中国林业出版社. |
WANG H L, ZHANG F, 2017. Conservation, management and biodiversity of Shanxi Luyashan National Nature Reserve[M]. Beijing: China Forestry Publishing House. | |
[37] |
谢宗强, 唐志尧, 2017. 中国灌丛生态系统碳储量的研究[J]. 植物生态学报, 41(1): 1-4.
DOI |
XIE Z Q, TANG Z Y, 2017. Studies on carbon storage of shrubland ecosystems in China[J]. Chinese Jounal of Plant Ecology, 41(1): 1-4. | |
[38] | 杨元合, 石岳, 孙文娟, 等, 2022. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 52(4): 534-574. |
YANG Y H, SHI Y, SUN W J, et al., 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica Vitae, 52(4): 534-574. | |
[39] | 张君红, 王健宇, 孟泽昕, 等, 2022. 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性[J]. 生态学报, 42(7): 2542-2558. |
ZHANG J H, WANG J Y, MENG Z X, et al., 2022. Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow[J]. Acta Ecologica Sinica, 42(7): 2542-2558. | |
[40] | 张丽霞, 张峰, 上官铁梁, 2001. 山西芦芽山植物群落的数量分类[J]. 植物学通报, 18(2): 231-239. |
ZHANG L X, ZHANG F, SHANGGUANG T L, 2001. Quantity analysis of plant communities on mountain Luya, Shanxi[J]. Chinese Bulleyin of Botany, 18(2): 231-239. |
[1] | CAI Xi'an, HUANG Juan, WU Tong, LIU Juxiu, JIANG Fen, WANG Senhao. Study on Methane Emission from Tree Leaves [J]. Ecology and Environment, 2021, 30(9): 1842-1847. |
[2] | YAN Dongfeng, ZHANG Yanyan, LV Kangting, ZHOU Mengli, WANG Ting, ZHAO Ning. Niche Characteristics of Dominant Tree Species in Natural Forests at Different Altitudes in the South of Taihang Mountains [J]. Ecology and Environment, 2021, 30(8): 1571-1580. |
[3] | HE Bin, LI Qing, CHEN Qunli, LI Wangjun, YOU Ping. Altitudinal Pattern of Species Diversity of Pseudotsuga sinensis Communty in Northwestern Guizhou, China [J]. Ecology and Environment, 2021, 30(6): 1111-1120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn