Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2283-2291.DOI: 10.16258/j.cnki.1674-5906.2022.12.002
Previous Articles Next Articles
SONG Ruipeng1(), YANG Qifan1, ZHENG Zhiheng1, XI Dan1,2,*
Received:
2022-09-06
Online:
2022-12-18
Published:
2023-02-15
Contact:
XI Dan
通讯作者:
习丹
作者简介:
宋瑞朋(1996年生),男,硕士研究生,主要研究方向为森林土壤有机碳组分。E-mail: songruipeng8@163.com
基金资助:
CLC Number:
SONG Ruipeng, YANG Qifan, ZHENG Zhiheng, XI Dan. Effects of Three Understory Vegetation Types on Soil Organic Carbon and Its Components in Cunninghamia lanceolata Plantation[J]. Ecology and Environment, 2022, 31(12): 2283-2291.
宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.002
林下植被Understory vegetation | 高度 Height/ cm | 地径 Ground diameter/ cm | 坡向 Slope aspect | 坡位 Slope position | 温度 Temperature/℃ | 海拔Altitude/m | 多度Abundance/% | 其他林下植被 Other undergrowth vegetation |
---|---|---|---|---|---|---|---|---|
It | 44.2±1.4 | 0.53±0.1 | 西南 | 下坡 | 18.96 | 110±3 | 90.3±0.7% | 闽楠(Phoebe bournei)、淡竹叶(Lophatherum gracile)和双盖蕨等 |
Dd | 108.3±13.0 | 5.80±1.1 | 西南 | 中坡 | 19.05 | 125±3 | 83.1±2.5% | 枇杷叶紫珠(Callicarpa kochiana)、闽楠、箬竹、紫麻、铁芒萁(Dicranopteris linearis)等 |
Of | 130.8±4.6 | 1.7±0.68 | 西南 | 上坡 | 18.91 | 130±3 | 79.0±5.7% | 闽楠、箬竹、双盖蕨、网脉酸藤子(Embelia rudis Hand.-Mazz)、枇杷叶紫珠、铁芒萁、地菍(Melastoma dodecandrum)等 |
Table 1 Information sheet of sample site
林下植被Understory vegetation | 高度 Height/ cm | 地径 Ground diameter/ cm | 坡向 Slope aspect | 坡位 Slope position | 温度 Temperature/℃ | 海拔Altitude/m | 多度Abundance/% | 其他林下植被 Other undergrowth vegetation |
---|---|---|---|---|---|---|---|---|
It | 44.2±1.4 | 0.53±0.1 | 西南 | 下坡 | 18.96 | 110±3 | 90.3±0.7% | 闽楠(Phoebe bournei)、淡竹叶(Lophatherum gracile)和双盖蕨等 |
Dd | 108.3±13.0 | 5.80±1.1 | 西南 | 中坡 | 19.05 | 125±3 | 83.1±2.5% | 枇杷叶紫珠(Callicarpa kochiana)、闽楠、箬竹、紫麻、铁芒萁(Dicranopteris linearis)等 |
Of | 130.8±4.6 | 1.7±0.68 | 西南 | 上坡 | 18.91 | 130±3 | 79.0±5.7% | 闽楠、箬竹、双盖蕨、网脉酸藤子(Embelia rudis Hand.-Mazz)、枇杷叶紫珠、铁芒萁、地菍(Melastoma dodecandrum)等 |
Figure 2 Soil total organic carbon content and density of soil organic carbon in different understory vegetation Different capital letters indicate significant differences between soil layers, and different lowercase letters indicate significant differences between understory vegetation types at 0.05 level. The same below
Index | pH | SWC | TN | C/N | NO3−-N | DTN | MBN | TOC | ROC | ROOC | DOC | MBC | Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | 0.491** | 0.372** | 0.985** | 0.877** | 0.506** | 0.766** | 0.905** | TOC | |||||
ROC | 0.548** | 0.390** | 0.931** | 0.854** | 0.502** | 0.699** | 0.911** | 0.959** | ROC | ||||
ROOC | 0.464** | 0.363** | 0.695** | 0.657** | 0.440** | 0.640** | 0.757** | 0.737** | 0.766** | ROOC | |||
DOC | 0.079 | 0.111 | 0.599** | 0.597** | 0.137 | 0.760** | 0.582** | 0.594** | 0.464** | 0.348** | DOC | ||
MBC | 0.459** | 0.202 | 0.874** | 0.772** | 0.379** | 0.645** | 0.946** | 0.878** | 0.863** | 0.672** | 0.562** | MBC | |
AOC | 0.471** | 0.359** | 0.729** | 0.686** | 0.444** | 0.665** | 0.792** | 0.768** | 0.791** | 0.998** | 0.388** | 0.714** | AOC |
Table 2 Correlation coefficientsbetween soil carbon components with soil physical and chemical factors
Index | pH | SWC | TN | C/N | NO3−-N | DTN | MBN | TOC | ROC | ROOC | DOC | MBC | Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | 0.491** | 0.372** | 0.985** | 0.877** | 0.506** | 0.766** | 0.905** | TOC | |||||
ROC | 0.548** | 0.390** | 0.931** | 0.854** | 0.502** | 0.699** | 0.911** | 0.959** | ROC | ||||
ROOC | 0.464** | 0.363** | 0.695** | 0.657** | 0.440** | 0.640** | 0.757** | 0.737** | 0.766** | ROOC | |||
DOC | 0.079 | 0.111 | 0.599** | 0.597** | 0.137 | 0.760** | 0.582** | 0.594** | 0.464** | 0.348** | DOC | ||
MBC | 0.459** | 0.202 | 0.874** | 0.772** | 0.379** | 0.645** | 0.946** | 0.878** | 0.863** | 0.672** | 0.562** | MBC | |
AOC | 0.471** | 0.359** | 0.729** | 0.686** | 0.444** | 0.665** | 0.792** | 0.768** | 0.791** | 0.998** | 0.388** | 0.714** | AOC |
[1] |
DAI X Q, FU X L, KOU L, et al., 2018. C꞉N꞉P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China[J]. Canadian Journal of Forest Research, 48: 1398-1405.
DOI URL |
[2] |
HE W, XU X, ZHANG C C, et al., 2020. Understory vegetation removal reduces the incidence of non-additive mass loss during leaf litter decomposition in a subtropical Pinus massoniana plantation[J]. Plant and Soil, 446(1-2): 529-541.
DOI URL |
[3] |
INOUE T, FUKUZAWA K, WATANABE T, et al., 2017. Spatial pattern of soil nitrogen availability and its relationship to stand structure in a coniferous-broadleaved mixed forest with a dense Fargesia rufa understory in northern Japan[J]. Ecological Research, 32: 227-241.
DOI URL |
[4] |
KNORR W, PRENTIC I C, HOUSE J I, et al., 2005. Long-term sensitivity of soil carbon turnover to warming[J]. Nature, 433(7023): 298-301.
DOI URL |
[5] |
LAI R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304: 1623-1627.
DOI PMID |
[6] |
LI Y C, LI Y F, CHANG S X, et al., 2017. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical Bamboo forests[J]. Soil Biology and Biochemistry, 107: 19-31.
DOI URL |
[7] |
PARTON W J, SCHIMEL D S, COLE C V, et al., 1987. Analysis offactors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 51: 1173-1179.
DOI URL |
[8] | RAVINDRAN A, YANG S S, 2015. Effect of vegetation type on microbial biomass carbon and nitrogen in subalpine mountation forest soils[J]. Journal of Microbiology, Immunology and Infection, 45(4): 362-369. |
[9] |
SAUHEITL L, GLASER B, DIPPOLD M, et al., 2010. Amino acid fingerprint of a grassland soil reflects changes in plant species richness[J]. Plant and Soil, 334: 353-363.
DOI URL |
[10] |
SYLVAIN T, MIGUEL A, 2016. Changes in soil organic carbon pools along a chronosequence of land abandonment in southern Spain[J]. Geoderma, 268: 14-21.
DOI URL |
[11] |
WAN S, LIU Z, CHEN Y, et al., 2019. Effects of lime application and understory removal on soil microbial communities in subtropical Eucalyptus robusta Smith plantations[J]. Forests, 10: 338.
DOI URL |
[12] | WANG D, WANG B, NIU X, 2014. Effects of natural forest types on soil carbon fractions in North-East China[J]. Journal of Tropical Forest Science, 26(3): 362-370. |
[13] |
WANG T, XU Q, GAO D Q, et al., 2021. Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations[J]. Scientific Reports, 11: 1-13.
DOI URL |
[14] |
ZENG Z Q, WANG S L, ZHANG C M, et al., 2015. Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China[J]. Journal of Forestry Research, 26: 673-678.
DOI URL |
[15] |
ZHANG J J, LI Y F, CHANG S X, et al., 2016. Understory management and fertilization on affected soil greenhouse gas emission and detritusphere[J]. Soil Biology and Biochemistry, 92: 111-118.
DOI URL |
[16] |
ZHAO S X, TA N, LI Z H, et al., 2018. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions[J]. Applied Soil Ecology, 123: 484-493.
DOI URL |
[17] | 崔东, 闫俊杰, 刘海军, 等, 2019. 伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J]. 生态学杂志, 38(7): 2087-2093. |
CUI D, YAN J J, LIU H J, et al., 2019. Differences in soil active organic carbon components and their contents in different types of wetlands in the Ili River Valley[J]. Chinese Journal of Ecology, 38(7): 2087-2093. | |
[18] | 陈法霖, 江波, 张凯, 等, 2011. 退化红壤丘陵区森林凋落物初始化学组成与分解速率的关系[J]. 应用生态学报, 22(18): 565-570. |
CHEN F L, JIANG B, ZHANG K, et al., 2011. Relationship between initial chemical composition and decomposition rate of forest apoplankton in degraded red soil hilly areas[J]. Chinese Journal of Applied Ecology, 22(18): 565-570. | |
[19] | 杜雪, 王海燕, 2022. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 35(1): 76-81. |
DU X, WANG H Y, 2022. Organic carbon activity fraction in Chinese forest soils and its influencing factors[J]. World Forestry Research, 35(1): 76-81. | |
[20] | 费裕翀, 吴庆锥, 张筱, 等, 2020. 不同林下植被管理措施对杉木大径材培育林土壤特性与出材量的影响[J]. 应用与环境生物学报, 26(3): 626-634. |
FEI Y C, WU Q Z, ZHANG X, et al., 2020. Effects of different understory vegetation management measures on soil characteristics and timber yield of Large-diameter Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied & Environmental Biology, 26(3): 626-634. | |
[21] |
高雨秋, 戴晓琴, 王建雷, 等, 2019. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 43(3): 258-272.
DOI |
GAO Y Q, DAI X Q, WANG J L, et al., 2019. Stoichiometric characteristics of soil enzymes in rhizosphere of subtropical artificial forest[J]. Chinese Journal of Plant Ecology, 43(3): 258-272.
DOI URL |
|
[22] | 郝江勃, 乔枫, 蔡子良, 2019. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J]. 生态环境学报, 28(2): 245-251. |
HE J B, QIAO F, CAI Z L, 2019. Seasonal dynamics of soil labile organic carbon and its fractions in subtropical evergreen broadleaved forest[J]. Ecology and Environmental Sciences, 28(2): 245-251. | |
[23] | 刘仁, 袁小兰, 刘俏, 等, 2020. 林下植被去除对杉木人工林土壤酶活性及其化学计量比的影响[J]. 林业科学研究, 33(5): 121-128. |
LIU R, YUAN X L, LIU Q, et al., 2020. Effect of understory vegetation removal on soil enzyme activities and their stoichiometric ratios in Cunninghamia lanceolata plantation[J]. Forest Research, 33(5): 121-128. | |
[24] | 马元丹, 江洪, 余树全, 等, 2009. 不同起源时间的植物叶凋落物在中亚热带的分解特性[J]. 生态学报, 29(10): 5237-5245. |
MA Y D, JIANG H, YU S Q, et al., 2009. Decomposition characteristics of plant leaf litter of different origin times in the central subtropics[J]. Acta Ecologica Sinica, 29(10): 5237-5245. | |
[25] |
莫雪丽, 戴晓琴, 王辉民, 等, 2018. 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例[J]. 植物生态学报, 42(7): 723-733.
DOI |
MO X L, DAI X Q, WANG H M, et al., 2018. Rhizosphere effect of overstory tree and understory shrub species in central subtropical plantations: A case study at Qianyanzhou, Taihe, Jiangxi[J]. Chinese Journal of Plant Ecology, 42(7): 723-733.
DOI URL |
|
[26] | 潘萍, 赵芳, 欧阳勋志, 等, 2018. 马尾松林两种林下植被土壤碳氮特征及其与凋落物质量的关系[J]. 生态学报, 38(11): 3988-3997. |
PAN P, ZHAO F, OUYANG X Z, et al., 2018. Soil carbon and nitrogen characteristics of two types of understory vegetation and their relationship with apoplankton quality in a Pinus massonianae forest[J]. Acta Ecologica Sinica, 38(11): 3988-3997. | |
[27] | 石丽娜, 林开敏, 陈梦瑶, 等, 2018. 近自然杉木林经营对土壤微生物量碳氮特征的影响[J]. 土壤通报, 49(1): 112-118. |
SHI L N, LIN K M, CHEN M Y, et al., 2018. Effects of near-natural Cunninghamia lanceolata forest management on carbon and nitrogen characteristics of soil microbiomass[J]. Chinese Journal of Soil Science, 49(1): 112-118. | |
[28] | 王棣, 耿增超, 佘雕, 等, 2015. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 35(16): 5421-5429. |
WANG L, GENG Z C, YU D, et al., 2015. Soil organic carbon stocks and vertical distribution of carbon and nitrogen in typical forest stands in the Qinling Mountains[J]. Acta Ecologica Sinica, 35(16): 5421-5429. | |
[29] | 王小平, 杨雪, 杨楠, 等, 2019. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 39(17): 6264-6272. |
WANG X P, YANG X, YANG N, et al., 2019. Effects of litter diversity and composition on litter decomposition and soil microbial community[J]. Acta Ecologica Sinica, 39(17): 6264-6272. | |
[30] | 吴亚丛, 李正才, 程彩芳, 等, 2013. 林下植被抚育对樟树人工林土壤活性有机碳库的影响[J]. 应用生态学报, 24(12): 3341-3346. |
WU Y C, LI Z C, CHENG C F, et al., 2013. Effect of understory vegetation nurturing on soil labile organic carbon pools in Cinnamomum camphora plantations[J]. Chinese Journal of Applied Ecology, 24(12): 3341-3346. | |
[31] |
习丹, 旷远文, 2018. 城市化梯度上亚热带常绿阔叶林土壤有机碳及其组分特征[J]. 应用生态学报, 29(7): 2149-2155.
DOI |
XI D, KUANG Y W, 2018. Characteristics of soil organic carbon and its components in subtropical broadleaf evergreen forests on an urbanization gradient[J]. Chinese Journal of Applied Ecology, 29(7): 2149-2155. | |
[32] | 习丹, 翁浩东, 胡亚林, 等, 2021. 林冠氮添加和林下植被去除对杉木林土壤有机碳组分的影响[J]. 生态学报, 41(21): 8525-8534. |
XI D, WENG H D, HU Y L, et al., 2021. Effect of canopy nitrogen addition and understory vegetation removal on soil organic carbon fraction in Cunninghamia lanceolata plantation[J]. Acta Ecologica Sinica, 41(21): 8525-8534. | |
[33] | 习盼, 董倩, 张亚楠, 等, 2020. 盐城滩涂湿地典型植物群落土壤活性有机碳组分分布特征[J]. 生态学杂志, 39(11): 3623-3632. |
XI P, DONG Q, ZHANG Y N, et al., 2020. Distribution characteristics of soil reactive organic carbon fraction in typical plant communities in Yancheng mudflat wetlands[J]. Chinese Journal of Ecology, 39(11): 3623-3632. | |
[34] | 夏丽丹, 于姣妲, 邓玲玲, 等, 2018. 杉木人工林地力衰退研究进展[J]. 世界林业研究, 31(2): 37-42. |
XIA L D, YU J D, DENG L L, et al., 2018. Researches on soil decline of Cunninghamia lanceolata plantation[J]. World Forestry Research, 31(2): 37-42. | |
[35] | 向慧敏, 温达志, 张玲玲, 等, 2015. 鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J]. 生态学报, 35(18): 6089-6099. |
XIANG H M, WEN D Z, ZHANG L L, et al., 2015. Changes in soil active and inert carbon along an elevation gradient in Dinghu Mountain forests[J]. Acta Ecologica Sinica, 35(18): 6089-6099. | |
[36] | 涂宏涛, 孙玉军, 刘素真, 等, 2015. 亚热带杉木人工林生物量及其碳储量分布——以福建将乐县杉木人工林为例[J]. 中南林业科技大学学报, 35(7): 94-99. |
XU H T, SUN Y J, LIU S Z, et al., 2015. Biomass and carbon storage distribution of Cunninghamia lanceolata plantation in subtropical China: A case study of Cunninghamia lanceolata plantation in Jianchle County, Fujian Province[J]. Journal of Central South University of Forestry & Technology, 35(7): 94-99. | |
[37] | 杨丽韫, 罗天祥, 吴松涛, 2005. 长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J]. 应用生态学报, 16(7): 1195-1199. |
YANG L W, LUO T X, WU S T, 2005. Comparison of belowground biomass and carbon and nitrogen stocks in different successional stages of primitive broadleaf red pine forests in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 16(7): 1195-1199. | |
[38] | 杨洋, 王继富, 张心昱, 等, 2016. 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制[J]. 生态学报, 36(24): 8102-8110. |
YANG Y, WANG J F, ZHANG X Y, et al., 2016. Mechanisms of the effects of apoplankton and understory vegetation on carbon and nitrogen hydrolase activities in Cunninghamia lanceolata plantation soils[J]. Acta Ecologica Sinica, 36(24): 8102-8110. | |
[39] | 张贾宇, 佘婷, 鄂晓伟, 等, 2021. 杨树人工林幼林阶段林下植被管理对土壤微生物生物量碳、氮及酶活性的影响[J]. 生态学报, 41(24): 9898-9909. |
ZHANG J Y, YU T, E X W, et al., 2021. Effects of understory vegetation management on soil microbial biomass carbon, nitrogen and enzyme activities in young Populus L plantation[J]. Acta Ecologica Sinica, 41(24): 9898-9909. | |
[40] | 张雪莹, 陈小梅, 危晖, 等, 2017. 城市化对珠江三角洲存留常绿阔叶林土壤有机碳组分及其碳库管理指数的影响[J]. 水土保持学报, 31(4): 184-190. |
ZHANG X Y, CHEN X M, WEI H, et al., 2017. Effects of urbanization on soil organic carbon components and carbon pool management index of persistent evergreen broad-leaved forest in the Pearl River Delta[J]. Journal of Soil and Water Conservation, 31(4): 184-190. | |
[41] | 赵芳, 欧阳勋志, 2016. 飞播马尾松林土壤有机碳空间分布及其影响因子[J]. 生态学报, 36(9): 2637-2645. |
ZHAO F, OUYANG X Z, 2016. Spatial Distribution of Soil Organic Carbon and its influencing factors in aerial sowing Pinus massonianae forest[J]. Acta Ecologica Sinica, 36(9): 2637-2645. | |
[42] | 朱浩宇, 王子芳, 陆畅, 等, 2021. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 53(2): 354-360. |
ZHU H Y, WANG Z F, LU C, et al., 2021. Characteristics of changes in soil reactive organic carbon and carbon pool under five planting covers in Jinyun Mountain[J]. Soils, 53(2): 354-360. |
[1] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[2] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environment, 2022, 31(3): 556-564. |
[3] | CHEN Si, WANG Can, LI Xiang, Li Mingrui, ZHAN Fangdong, LI Yuan, ZU Yanquan, HE Yongmei. Effects of Different UV-B Radiation Levels on Soil Enzyme Activities, Active Organic Carbon Content and Greenhouse Gas Emissions in Paddy Fields [J]. Ecology and Environment, 2021, 30(6): 1260-1268. |
[4] | WANG Ruifan, WEI Nibin, ZHANG Canghao, BAO Tiantian, LIU Jian, YU Kunyong, WANG Fan. UAV Multi Angle Remote Sensing Quantification of Understory Vegetation Coverage in the Hilly Region of South China [J]. Ecology and Environment, 2021, 30(12): 2294-2302. |
[5] | ZHANG Shasha, LI Aiqin, WANG Huirong, WANG Jingjing, XU Xiaoniu. Ecological Stoichiometry of Soil Carbon, Nitrogen and Phosphorus in Cunninghamia lanceolata Plantation Across An Elevation Gradient [J]. Ecology and Environment, 2020, 29(1): 97-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn