Ecology and Environment ›› 2022, Vol. 31 ›› Issue (5): 990-998.DOI: 10.16258/j.cnki.1674-5906.2022.05.014
• Research Articles • Previous Articles Next Articles
ZHANG Chi1,2(), ZHENG Huan1,2, NI Guohua1,*(
), ZHAO Yanjun1,2
Received:
2021-12-21
Online:
2022-05-18
Published:
2022-07-12
Contact:
NI Guohua
张弛1,2(), 郑瓛1,2, 倪国华1,*(
), 赵彦君1,2
通讯作者:
倪国华
作者简介:
张弛(1997年生),男,硕士研究生,主要从事等离子体大气治理研究。E-mail: 3192053619@qq.com
基金资助:
CLC Number:
ZHANG Chi, ZHENG Huan, NI Guohua, ZHAO Yanjun. Study on the Removal of Toluene by Multi-arc Plasma[J]. Ecology and Environment, 2022, 31(5): 990-998.
张弛, 郑瓛, 倪国华, 赵彦君. 多弧等离子体去除甲苯的研究[J]. 生态环境学报, 2022, 31(5): 990-998.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.05.014
Figure 3 Image analysis steps of luminance area generated by discharge (a) original discharge image; (b) introduction of circular observation area; (c) conversion of grayscale image to binary image
放电类型 Discharge types | 放电功率 Discharge power/ W | 甲苯浓度 Toluene concentration/ (mg∙m-3) | 气体流量 Gasflow/ (L∙min-3) | 去除率 Removal rate/ % | CO2选择性 CO2 selectivity/ % | 能量效率 Energy efficiency/ (g∙kW-1∙h-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
DBD协同催化 DBD cocatalysis | 24.0 | 6170 | 0.25 | 96 | 91 | 3.7 | Wang et al., |
DBD协同催化 DBD cocatalysis | 0.5 | 440 | 0.50 | 99 | 25 | 26.1 | Tang et al., |
DBD协同催化 DBD cocatalysis | 56.5 | 700 | 10.00 | 71 | 5.3 | Liang et al., | |
DBD协同催化 DBD cocatalysis | 1.8 | 206 | 0.10 | 98 | 0.7 | Guo et al., | |
电晕放电协同催化 Corona discharge cocatalysis | 2.2 | 870 | 0.50 | 95 | 70 | 11.3 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 5.2 | 410 | 0.20 | 62 | 52 | 0.6 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 10.0 | 290 | 0.25 | 93 | 20 | 0.4 | Mista et al., |
滑动弧放电 Sliding arc discharge | 110 | 1800 | 30.00 | 59 | 17.5 | Zheng et al., | |
多弧等离子体协同催化 Multi-arc plasma cocatalysis | 490.4 | 2000 | 116.67 | 84 | 62 | 24.1 | 本研究 |
多弧等离子体 Multi-arc plasm | 490.4 | 2000 | 116.67 | 77 | 30 | 22.0 | 本研究 |
Table 1 Comparison of the degradation performance of toluene by different plasma discharge types
放电类型 Discharge types | 放电功率 Discharge power/ W | 甲苯浓度 Toluene concentration/ (mg∙m-3) | 气体流量 Gasflow/ (L∙min-3) | 去除率 Removal rate/ % | CO2选择性 CO2 selectivity/ % | 能量效率 Energy efficiency/ (g∙kW-1∙h-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
DBD协同催化 DBD cocatalysis | 24.0 | 6170 | 0.25 | 96 | 91 | 3.7 | Wang et al., |
DBD协同催化 DBD cocatalysis | 0.5 | 440 | 0.50 | 99 | 25 | 26.1 | Tang et al., |
DBD协同催化 DBD cocatalysis | 56.5 | 700 | 10.00 | 71 | 5.3 | Liang et al., | |
DBD协同催化 DBD cocatalysis | 1.8 | 206 | 0.10 | 98 | 0.7 | Guo et al., | |
电晕放电协同催化 Corona discharge cocatalysis | 2.2 | 870 | 0.50 | 95 | 70 | 11.3 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 5.2 | 410 | 0.20 | 62 | 52 | 0.6 | Yao et al., |
电晕放电协同催化 Corona discharge cocatalysis | 10.0 | 290 | 0.25 | 93 | 20 | 0.4 | Mista et al., |
滑动弧放电 Sliding arc discharge | 110 | 1800 | 30.00 | 59 | 17.5 | Zheng et al., | |
多弧等离子体协同催化 Multi-arc plasma cocatalysis | 490.4 | 2000 | 116.67 | 84 | 62 | 24.1 | 本研究 |
多弧等离子体 Multi-arc plasm | 490.4 | 2000 | 116.67 | 77 | 30 | 22.0 | 本研究 |
[1] |
BO Z, YAN J H, LI X D, et al., 2009. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds[J]. Journal of Hazardous Materials, 166: 1210-1216.
DOI URL |
[2] |
GUO Y F, YE D Q, CHEN K F, et al., 2007. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 126(3-4): 328-337.
DOI URL |
[3] |
HARIZ R, DEL R, MERCIER C, et al., 2016. Absorption of toluene by vegetable oil-water emulsion in scrubbing tower: Experiments and modeling[J]. Chemical Engineering Science, 157: 264-271.
DOI URL |
[4] |
COX H H J, DESHUSSES M A, 2002. Co-treatment of H2S and toluene in a biotrickling filter[J]. Chemical Engineering Journal, 87(1): 101-110.
DOI URL |
[5] |
INDARTO A, YANG D R, CHE H A, et al., 2007. Advanced VOCs decomposition method by gliding arc plasma[J]. Chemical Engineering Journal, 131(1-3): 337-341.
DOI URL |
[6] | LEE D H, KIM H, SONG Y H, et al., 2014. Plasma Burner for Active Regeneration of Diesel Particulate Filter[J]. Plasma Chemistry & Plasma Processing, 34(1): 159-173. |
[7] |
LI S J, DANG X Q, YU X, et al., 2020. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 388: 124275-124286.
DOI URL |
[8] |
LI X Q, ZHANG L, YANG Z Q, et al., 2019. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process:A review[J]. Separation and Purification Technology, 235: 116213-116221.
DOI URL |
[9] |
LIANG W J, WANG A H, MA L, et al., 2015. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation[J]. Journal of Electrostatics, 75: 27-34.
DOI URL |
[10] | LIN Q F, ZHAO Y J, DUAN W X, et al., 2019. Characteristics of non-thermal AC arcs in multi-arc generator[J]. Chinese Physics B, 28(12): 259-271. |
[11] |
MA F J, ZHU Y N, WU B, et al., 2019. Degradation of DDTs in thermal desorption off-gas by pulsed corona discharge plasma[J]. Chemosphere, 233: 913-919.
DOI URL |
[12] |
MISTA W, KACPRZYK R, 2008. Decomposition of toluene using non-thermal plasma reactor at room temperature[J]. Catalysis Today, 137(2-4): 345-349.
DOI URL |
[13] |
QUAN Y H, MIAO C, TAO L I, et al., 2021. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 49(2): 211-219.
DOI URL |
[14] |
SHI R, LIU K K, LIU B G, et al., 2021. New insight into toluene adsorption mechanism of melamine urea-formaldehyde resin based porous carbon: Experiment and theory calculation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2021.127600.
DOI |
[15] |
TANG X J, FENG F D, YE L L, et al., 2013. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts[J]. Catalysis Today, 211: 39-43.
DOI URL |
[16] |
TATAROVA E, BUNDALESKA N, SARRETTE J P, et al., 2014. Plasmas for environmental issues: From hydrogen production to 2D materials assembly[J]. Plasma Sources Science & Technology, DOI: 10.1088/0963-0252/23/6/063002.
DOI |
[17] |
WANG B W, CHI C M, XU M, et al., 2017. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 322: 679-692.
DOI URL |
[18] |
HE X P, WAMG T, HUANG J H, et al., 2020. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2020.116675.
DOI |
[19] |
XI J Y, HU H Y, QIAN Y, 2006. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene:Biomass accumulation and stable-run time estimation[J]. Biochemical Engineering Journal, 31(2): 165-172.
DOI URL |
[20] |
YANG C T, MIAO G, PI Y H, et al., 2019. Abatement of various types of VOCs by adsorption/ catalytic oxidation: A review[J]. Chemical Engineering Journal, 370: 1128-1153.
DOI URL |
[21] |
YAO S L, CHEN Z Z, XIE H, et al., 2020. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.125863.
DOI |
[22] |
YAO X M, JIANG N, LI J, et al., 2018. An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation[J]. Chemical Engineering Journal, 362: 339-348.
DOI URL |
[23] |
ZHAO Y J, LIN Q F, NI G H, et al., 2020. Effect of electrode configuration on plasma spatial distribution and gas temperature in multi‐arc plasma generator with three pairs of electrodes[J]. Contributions to Plasma Physics, DOI: 10.1002/ctpp.202000111.
DOI |
[24] |
ZHENG B, YAN J H, LI X D, et al., 2008. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of Hazardous Materials, 155(3): 494-501.
DOI URL |
[25] | 李尚, 2017. 生物滴滤塔处理甲苯废气实验研究[D]. 合肥: 合肥工业大学. |
LI S, 2017. Study on the treatment of toluene by biotricking filter[D] Hefei: Hefei University of Technology. | |
[26] | 任思达, 梁文俊, 王昭艺, 等, 2019. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 39(7): 2774-2780. |
REN S D, LIANG W J, WANG Z Y, 2019. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 39(7): 2774-2780. | |
[27] | 盛焕焕, 2014. 电弧放电等离子体处理甲苯废气的研究[D]. 武汉: 华中科技大学: 19-22. |
SHENG H H, 2014. Research on the Removal of Toluene Using Arc Discharge Plasma[D]. Wuhan: Huazhong University of Science and Technology: 19-22. | |
[28] | 司马聪, 2015. 臭氧低温催化氧化低浓度甲苯的研究[D]. 北京: 北京化工大学: 41-42. |
SI M C, 2015. The study on Catalytic oxidation of low concentration toluene by ozone at low temperature[D]. Beijing: Beijing University of Chemical Technology: 41-42. | |
[29] | 杨旗, 胡辉, 陈卫鹏, 2016. 脉冲电源对电弧放电等离子体温度的控制研究[J]. 高电压技术, 42(2): 446-451. |
YANG Q, HU H, CHEN W P, 2016. Study on Control of Pulse Power on Arc Plasma Temperature[J]. High Voltage Engineering, 42(2): 446-451. | |
[30] | 杨仕玲, 2020. 低温等离子体-纳米后催化协同降解挥发性有机化合物基础研究.[D]. 杭州: 浙江大学: 41-42. |
YANG S L, 2020. Fundamental research on post nonthermal plasma- nanocatalysis for the synergistic decomposition of volatile organic compounds[D]. Hangzhou: Zhejiang University: 41-42. | |
[31] | 赵进渊, 2020. 铜锰复合氧化物催化剂的制备及其催化燃烧甲苯性能研究[D]. 兰州: 兰州大学:36. |
ZHAO J Y, 2020. Preparation of Copper-manganese Composite Oxide Catalysts and the Performance of Catalytic Combustion of Toluene[D]. Lanzhou: Lanzhou University:36. | |
[32] | 赵业红, 2016. 直流电晕低温等离子体协同催化降解低浓度挥发性有机废气的研究[D]. 杭州: 浙江大学: 44-45. |
ZHAO Y H, 2016. Experimental study on DC corona discharges non-thermal plasma coupled with catalysis for Low-concentration volatile organic compounds removal[D]. Hangzhou: Zhejiang University: 44-45. |
[1] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[2] | LIAO Tong, XIONG Xin, WANG Zaihua, YANG Xiajie, HUANG Yingnan, FENG Jiaying. The Experience of Prevention and Control of Air Pollution in International Advanced Bay Areas and Its Enlightenment to Guangdong-Hong Kong-Macao Greater Bay Area in China [J]. Ecology and Environment, 2022, 31(11): 2242-2250. |
[3] | WU Zhaoliang, JIN Min. Review and Evidence of the Impacts of Air Pollution on Social Economic Behaviors of Chinese Residents [J]. Ecology and Environment, 2022, 31(11): 2251-2262. |
[4] | CHEN Yang, ZHANG Jinpu, QIU Xiaonuan, JU Hong, HUANG Jun. Characteristic of Ozone Pollution and Meteorological Factors Analysis in Guangzhou in 2021 [J]. Ecology and Environment, 2022, 31(10): 2028-2038. |
[5] | CUI Liang, ZHANG Junrui, LI Siyuan. Study on the Benefits of Clean Heating and Emission Reduction of Rural Residents under the Background of Double Carbon [J]. Ecology and Environment, 2022, 31(10): 2010-2018. |
[6] | CHEN Hao, ZHANG Yuying, ZHONG Yan, ZHANG Shiwei, CHEN Junwei, FENG Jialiang. Concentration and Composition of Organic Amines in PM1 in Shanghai [J]. Ecology and Environment, 2022, 31(10): 2019-2027. |
[7] | FU Mengqi, LIU Juan, LI Jin, ZHANG Fan, LI Xueyao, YANG Zhengjun, LI Penghui, JIN Taosheng. Study on Carbon Emission of Different Oil Products on China Ⅳ and China Ⅴ Diesel Buses [J]. Ecology and Environment, 2022, 31(9): 1849-1855. |
[8] | WANG Molei, LI Zhihui, CHEN Laiguo, GUO Songjun, LIU Ming, WANG Shuo, LU Haitao. Polybrominated Diphenyl Ethers in Flue Gas from Municipal Waste Incineration Plants and Surrounding Soil Pollution Characteristics [J]. Ecology and Environment, 2022, 31(8): 1582-1589. |
[9] | TAO Shuangcheng, HUAGN Shanqian, GAO Shuohan, XIONG Xinzhu, HAO Yanzhao, DENG Shunxi. Study on the Control Strategy of Vehicle Emission Based on Scenario Analysis in Guanzhong Urban Agglomeration [J]. Ecology and Environment, 2022, 31(8): 1573-1581. |
[10] | WANG Zhanyong, CHEN Xin, HU Xisheng, HE Hongdi, CAI Ming, PENG Zhongren. Mechanism and Research Methods of Roadside Green Barriers Affecting the Distribution of Atmospheric Particulate Matter: A Review [J]. Ecology and Environment, 2022, 31(5): 1047-1058. |
[11] | CHEN Xuequan, KONG Bin, LAN Qing, YU Zhiquan, XIE Yinsi, HUANG Junyi. Emission Characteristics and Ozone Formation Potential Assessment of Volatile Organic Compounds (VOCs) from Adhesive Manufacturing Industry [J]. Ecology and Environment, 2022, 31(4): 750-758. |
[12] | HAO Yongpei, SONG Xiaowei, ZHAO Wenjun, XIANG Famin. Spatiotemporal Distribution of Air Pollution and Correlation Factors in Fenwei Plain [J]. Ecology and Environment, 2022, 31(3): 512-523. |
[13] | WANG Wei, CHENG Xinyue. Analysis of Temporal and Spatial Distribution Characteristics and Influencing Factors of PM2.5 and PM10 in Different Functional Street Canyons in Hefei City [J]. Ecology and Environment, 2022, 31(3): 524-534. |
[14] | LIAO Huimin, SHI Fengqi, LI Ming, ZHU Yilong. Study on Dust Retention Rank and Pattern Recognition of Typical Garden Plant Leaves in Changsha [J]. Ecology and Environment, 2022, 31(1): 110-116. |
[15] | RAN Xiaozhui, LIU Hongyan, TU Yu, GU Xiaofeng, YU Enjiang. Micro-morphology, Heavy Metal Distribution Characteristics and Health Risk Assessment of TSP: A Case Study in Typical Watershed with Superposition of Industry Pollution under High Geological Background in Northwest Guizhou [J]. Ecology and Environment, 2021, 30(12): 2339-2350. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn