Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1183-1191.DOI: 10.16258/j.cnki.1674-5906.2021.06.009
• Research Articles • Previous Articles Next Articles
YAN Zhenning1,2(), MEI Baoling1,*(
), ZHANG Guiping3, HAN Guangxuan2, XIE Baohua2,*(
), ZHANG Shuyan4, ZHOU Yingfeng4, LIU Zhanhang2,5
Received:
2021-01-02
Online:
2021-06-18
Published:
2021-09-10
Contact:
MEI Baoling,XIE Baohua
闫振宁1,2(), 梅宝玲1,*(
), 张桂萍3, 韩广轩2, 谢宝华2,*(
), 张树岩4, 周英锋4, 刘展航2,5
通讯作者:
梅宝玲,谢宝华
作者简介:
闫振宁(1994年生),男,硕士研究生,研究方向为湿地生态学。E-mail: 404052051@qq.com
基金资助:
CLC Number:
YAN Zhenning, MEI Baoling, ZHANG Guiping, HAN Guangxuan, XIE Baohua, ZHANG Shuyan, ZHOU Yingfeng, LIU Zhanhang. Effects of Elevation on the Invasion and Expansion of Spartina alterniflora in A Salt Marsh[J]. Ecology and Environment, 2021, 30(6): 1183-1191.
闫振宁, 梅宝玲, 张桂萍, 韩广轩, 谢宝华, 张树岩, 周英锋, 刘展航. 高程对盐沼湿地互花米草生长与扩散的影响[J]. 生态环境学报, 2021, 30(6): 1183-1191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.009
移栽点Transplanting site | 植被 Vegetation | 平均淹水深度 Average depth of flooding/(cm∙d-1) | 淹水频率 Foodding frequency/% | 淹水时长 Duration of flooding/h | 最大淹水深度 Maximum depth of flooding/cm | 电导率# Conductivity/ (ms∙cm-1) | 温度# Temperature/ ℃ |
---|---|---|---|---|---|---|---|
CK | 互花米草 S. alterniflora | 14.56±0.001a | 100 | 270.53±15.8a | 132.83 | 10.03±0.4a | 25.27±1b |
TP1 | 光滩 Bare flat | 7.80±0.001b | 94 | 160.08±12.2b | 112.43 | 10.00±0.4a | 24.85±1.1b |
TP2 | 光滩+盐地碱蓬 Bare flat+S. salsa | 5.64±0.001c | 89 | 128.22±9.9c | 102.63 | 11.22±0.4a | 25.66±1.1b |
TP3 | 盐地碱蓬 S. salsa | 4.27±0.001d | 85 | 107.92±8.2c | 95.13 | 10.82±0.4a | 26.68±1ab |
TP4 | 盐地碱蓬+芦苇 S. salsa+P. australis | 2.78±0.001e | 78 | 81.00±6.1d | 84.83 | 11.29±0.4a | 26.54±1.1ab |
TP5 | 芦苇P. australis | 1.78±0.001f | 67 | 59.81±4.3de | 75.63 | 10.32±0.5a | 28.06±1.1ab |
TP6 | 柽柳 T. chinensis | 1.19±0.149g | 67 | 43.61±3.2e | 68.32 | 10.57±0.5a | 29.19±1.1a |
Table 1 Environment factors at different transplanting site
移栽点Transplanting site | 植被 Vegetation | 平均淹水深度 Average depth of flooding/(cm∙d-1) | 淹水频率 Foodding frequency/% | 淹水时长 Duration of flooding/h | 最大淹水深度 Maximum depth of flooding/cm | 电导率# Conductivity/ (ms∙cm-1) | 温度# Temperature/ ℃ |
---|---|---|---|---|---|---|---|
CK | 互花米草 S. alterniflora | 14.56±0.001a | 100 | 270.53±15.8a | 132.83 | 10.03±0.4a | 25.27±1b |
TP1 | 光滩 Bare flat | 7.80±0.001b | 94 | 160.08±12.2b | 112.43 | 10.00±0.4a | 24.85±1.1b |
TP2 | 光滩+盐地碱蓬 Bare flat+S. salsa | 5.64±0.001c | 89 | 128.22±9.9c | 102.63 | 11.22±0.4a | 25.66±1.1b |
TP3 | 盐地碱蓬 S. salsa | 4.27±0.001d | 85 | 107.92±8.2c | 95.13 | 10.82±0.4a | 26.68±1ab |
TP4 | 盐地碱蓬+芦苇 S. salsa+P. australis | 2.78±0.001e | 78 | 81.00±6.1d | 84.83 | 11.29±0.4a | 26.54±1.1ab |
TP5 | 芦苇P. australis | 1.78±0.001f | 67 | 59.81±4.3de | 75.63 | 10.32±0.5a | 28.06±1.1ab |
TP6 | 柽柳 T. chinensis | 1.19±0.149g | 67 | 43.61±3.2e | 68.32 | 10.57±0.5a | 29.19±1.1a |
Fig. 3 Density (a) and plant height (c) of seedlings, and density (b) and plant height (d) of clonal ramets of S. alterniflora at different elevations
环境因子 Environmental factors | 第Ⅰ轴 Axis Ⅰ | 第Ⅱ轴 Axis Ⅱ |
---|---|---|
高程 Elevation | 0.720 | -0.276 |
平均淹水深度 Average depth of flooding | -0.678 | 0.088 |
最大淹水深度 Maximum depth of flooding | -0.410 | 0.089 |
淹水时长 Total duration of flooding | -0.699 | -0.209 |
淹水频率 The flood frequency | -0.649 | 0. 287 |
温度 Temperature | 0.559 | 0.457 |
电导率 Conductivity | -0.125 | -0.450 |
Table 2 Correlation of environmental factors with the axes
环境因子 Environmental factors | 第Ⅰ轴 Axis Ⅰ | 第Ⅱ轴 Axis Ⅱ |
---|---|---|
高程 Elevation | 0.720 | -0.276 |
平均淹水深度 Average depth of flooding | -0.678 | 0.088 |
最大淹水深度 Maximum depth of flooding | -0.410 | 0.089 |
淹水时长 Total duration of flooding | -0.699 | -0.209 |
淹水频率 The flood frequency | -0.649 | 0. 287 |
温度 Temperature | 0.559 | 0.457 |
电导率 Conductivity | -0.125 | -0.450 |
环境因子 Environmental factors | 重要性排序 Importance rank | 环境因子所占 解释量 Variance explains of Environmental factors | F | P |
---|---|---|---|---|
高程 Elevation | 1 | 50.4 | 33.593 | 0.002 |
淹水时长 Total duration of flooding | 2 | 47.5 | 29.893 | 0.002 |
平均淹水深度 Average depth of flooding | 3 | 44.6 | 26.555 | 0.002 |
淹水频率 The flood frequency | 4 | 41.0 | 22.950 | 0.002 |
温度 Temperature | 5 | 30.8 | 14.715 | 0.002 |
最大淹水深度 Maximum depth of flooding | 6 | 16.3 | 6.438 | 0.020 |
电导率 Conductivity | 7 | 2.10 | 0.696 | 0.412 |
Table 3 Importance and signification level of environmental factors
环境因子 Environmental factors | 重要性排序 Importance rank | 环境因子所占 解释量 Variance explains of Environmental factors | F | P |
---|---|---|---|---|
高程 Elevation | 1 | 50.4 | 33.593 | 0.002 |
淹水时长 Total duration of flooding | 2 | 47.5 | 29.893 | 0.002 |
平均淹水深度 Average depth of flooding | 3 | 44.6 | 26.555 | 0.002 |
淹水频率 The flood frequency | 4 | 41.0 | 22.950 | 0.002 |
温度 Temperature | 5 | 30.8 | 14.715 | 0.002 |
最大淹水深度 Maximum depth of flooding | 6 | 16.3 | 6.438 | 0.020 |
电导率 Conductivity | 7 | 2.10 | 0.696 | 0.412 |
[1] |
ALLEN J R L, 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 19(12): 1155-1231.
DOI URL |
[2] |
BERTNESS M D, 1991. Zonation of Spartina Patens and Spartina alterniflora in New England Salt Marsh[J]. Ecology, 72(1): 138-148.
DOI URL |
[3] |
HU Z, VAN B J, VAN D W D, et al., 2015. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing[J]. Journal of Geophysical Research-Biogeosciences, 120(7): 1450-1469.
DOI URL |
[4] |
HUGGETT A J, 2005. The concept and utility of 'ecological thresholds' in biodiversity conservation[J]. Biological Conservation, 124(3): 301-310.
DOI URL |
[5] |
KUEFFER C, 2017. Plant invasions in the Anthropocene[J]. Science, 358(6364): 724-725.
DOI URL |
[6] |
LARSEN S, ALP M, 2015. Ecological thresholds and riparian wetlands:an overview for environmental managers[J]. Limnology, 16(1): 1-9.
DOI URL |
[7] |
LI R X, YU Q, WANG Y W, et al., 2018. The relationship between inundation duration and Spartina alterniflora growth along the Jiangsu coast, China[J]. Estuarine Coastal and Shelf Science, 213: 305-313.
DOI URL |
[8] |
MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al., 2002. Responses of coastal wetlands to rising sea level[J]. Ecology, 83(10): 2869-2877.
DOI URL |
[9] | ORMEROD S J, WATKINSON A R, 2000. Large-scale ecology and hydrology: an introductory perspective from the editors of the Journal of Applied Ecology[J]. Journal of Applied Ecology, 37(s1): 1-5. |
[10] |
PERRINGS C, WALKER B, 1997. Biodiversity, resilience and the control of ecological-economic systems: The case of fire-driven rangelands[J]. Ecological Economics, 22(1): 73-83.
DOI URL |
[11] |
PIMENTEL D, MCNAIR S, JANECKA J, et al., 2001. Economic and environmental threats of alien plant, animal, and microbe invasions[J]. Agriculture Ecosystems & Environment, 84(1): 1-20.
DOI URL |
[12] |
REN G B, WANG J J, WANG A D, et al., 2019. Monitoring the Invasion of Smooth Cordgrass Spartina alterniflora within the Modern Yellow River Delta Using Remote Sensing[J]. Journal of Coastal Research, DOI: 10.2112/SI90-017.1.
DOI |
[13] |
VAN WESENBEECK B K, KOPPEL J V D, Peter M J, et al., 2008. Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems?[J]. Oikos, 117(1): 152-159.
DOI URL |
[14] |
WIJTE A H B M, GALLAGHER J L, 1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants.1. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceaei)[J]. American Journal of Botany, 83(10): 1337-1342.
DOI URL |
[15] |
XIE B H, HAN G X, QIAO P Y, et al., 2019. Effects of mechanical and chemical control on invasive Spartina alterniflora in the Yellow River Delta, China[J]. Peerj, 7(8): e7655.
DOI URL |
[16] |
XUE L, LI X Z, ZHANG Q, et al., 2018. Elevated salinity and inundation will facilitate the spread of invasive Spartina alterniflora in the Yangtze River Estuary, China[J]. Journal of Experimental Marine Biology and Ecology, 506: 144-154.
DOI URL |
[17] |
ZHANG R S, SHEN Y M, LU L Y, et al., 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China[J]. Ecological Engineering, 23(2): 95-105.
DOI URL |
[18] |
陈权, 马克明, 2015. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 39(3): 283-299.
DOI |
CHEN Q, MA K M, 2015. Research overview and trend on biological invasion in mangrove forests[J]. Chinese Journal of Plant Ecology, 39(3): 283-299.
DOI URL |
|
[19] |
陈中义, 李博, 陈家宽, 2004. 米草属植物入侵的生态后果及管理对策[J]. 生物多样性, 12(2): 280-289.
DOI |
CHEN Z Y, LI B, CHEN J K, 2004. Ecological consequences and management of Spartina spp. Invasions in coastal ecosystems[J]. Biodiversity Science, 12(2): 280-289. | |
[20] | 陈正勇, 王国祥, 刘金娥, 等, 2011. 淹水调控对互花米草生长的影响[J]. 环境科学研究, 24(9): 1003-1007. |
CHEN Z Y, WANG G X, LIU J E, et al., 2011. Effects of Waterlogging Regulation on Growth of Spartina Alterniflora[J]. Research of Environmental Sciences, 24(9): 1003-1007. | |
[21] | 冯建祥, 黄茜, 陈卉, 等, 2018. 互花米草入侵对盐沼和红树林滨海湿地底栖动物群落的影响[J]. 生态学杂志, 37(3): 943-951. |
FENG J X, HUANG Q, CHEN H, et al., 2018. Effects of Spartina alterniflora invasion on benthic faunal community in saltmarsh and mangrove wetland[J]. Chinese Journal of Ecology, 37(3): 943-951. | |
[22] | 李大林, 2014. 我国每年因外来生物入侵经济损失超两千亿元[J]. 广西质量监督导报 (11): 30. |
LI D L, 2014. China loses more than 200 billion yuan due to alien biological invasion every year[J]. Guangxi Quality Supervision Guide Periodical (11): 30. | |
[23] | 李伟, 袁琳, 张利权, 等, 2018. 海三棱藨草及互花米草对模拟盐胁迫的响应及其耐盐阈值[J]. 生态学杂志, 37(9): 2596-2602. |
LI W, YUAN L, ZHANG L Q, et al., 2018. Responses of Scirpus mariqueter and Spartina alterniflora to simulated salt stress and salttolerance thresholds[J]. Chinese Journal of Ecology, 37(9): 2596-2602. | |
[24] | 刘会玉, 林振山, 齐相贞, 等, 2015. 基于个体的空间显性模型和遥感技术模拟入侵植物扩张机制[J]. 生态学报, 35(23): 7794-7802. |
LIU H Y, LIN Z S, QI X Z, et al., 2015. The dispersal mechanism of invasive plants based on a spatially explicit individual-based model and Remote sensing technology: A case study of Spartina alterniflora[J]. Acta Ecologica Sinica, 35(23): 7794-7802. | |
[25] | 刘潞, 余夏杨, 唐洪根, 等, 2019. 围垦对条子泥互花米草种群年季扩张特征的影响[J]. 农业资源与环境学报, 36(3): 376-384. |
LIU L, YU X Y, TANG H G, et al., 2019. Effect of reclamation on the annual and seasonal characteristics of Spartina alterniflora population in Tiaozini coastal wetland[J]. Journal of Agricultural Resources and Environment, 36(3): 376-384. | |
[26] | 孙书存, 蔡永立, 刘红, 2001. 长江口盐沼海三棱藨草在高程梯度上的生物量分配(英文)[J]. 植物学报, 43(2): 178-185. |
SUN S C, CAI Y L, LIU H, 2001. Biomass Allocation of Scirpus mariqueter Along an Elevational Gradient in a Salt Marsh of the Yangtse River Estuary[J]. Journal of Integrative Plant Biology, 43(2): 178-185. | |
[27] |
唐海萍, 陈姣, 薛海丽, 2015. 生态阈值: 概念、方法与研究展望[J]. 植物生态学报, 39(9): 932-940.
DOI |
TANG H P, CHEN J, XUE H L, 2015. Ecological thresholds: Concept, methods and research outlooks[J]. Chinese Journal of Plant Ecology, 39(9): 932-940.
DOI URL |
|
[28] | 徐国万, 卓荣宗, 曹豪, 等, 1989. 互花米草生物量年动态及其与滩涂生境的关系[J]. 植物生态学与地植物学学报, 13(3): 230-235. |
XU G W, ZHUO R Z, CAO H, et al., 1989. Annual changes of biomass of Spartina alterniflora and the relationships between biomass and tidalland habits[J]. Chinese Journal of Plant Ecology, 13(3): 230-235. | |
[29] | 袁连奇, 张利权, 2010. 调控淹水对互花米草生理影响的研究[J]. 海洋与湖沼, 41(2): 175-179. |
YUAN L Q, ZHANG L Q, 2010. Effects of Waterlogging on the Physiology of Spartina Alterniflora[J]. Oceanologia ET Limnologia Sinica, 41(2): 175-179. | |
[30] | 张华兵, 韩爽, 王娟, 等, 2020. 生态恢复视角下海滨湿地景观模拟——以江苏盐城湿地珍禽国家级自然保护区为例[J]. 水生态学杂志, 41(4): 41-47. |
ZHANG B H, HAN S, WANG J, et al., 2020. Landscape Simulation of Coastal Wetlands to Support Ecological Restoration: A Case Study of the Jiangsu Yancheng Wetland Rare Birds National Nature Reserve[J]. Journal of Hydroecology, 41(4): 41-47. | |
[31] | 赵相健, 赵彩云, 柳晓燕, 等, 2015. 不同纬度地区互花米草生长性状及适应性研究[J]. 生态科学, 34(1): 119-128. |
ZHAO X J, ZHAO C Y, LIU X Y, et al., 2015. Growth characteristics and adaptability of Spartina alterniflora in different Iatitude areas along China coast[J]. Ecological Science, 34(1): 119-128. | |
[32] | 赵志远, 袁琳, 李伟, 等, 2018. 生境异质性及源株密度对互花米草入侵力的影响[J]. 生态学报, 38(18): 6632-6641. |
ZHAO Z Y, YUAN L, LI W, et al., 2018. Effects of habitat heterogeneity and ortet density on the invasiveness of Spartina alterniflora[J]. Acta Ecologica Sinica, 38(18): 6632-6641. | |
[33] | 朱晓泾, 袁琳, 赵志远, 等, 2019. 环境因子对互花米草定居潮滩的影响分析[J]. 华东师范大学学报(自然科学版) (6): 140-152. |
ZHU X J, YUAN L, ZHAO Z Y, et al., 2019. The influence of environmental factors on the settlement of Spartina alterniflora on tidal flats[J]. Journal of East China Normal University (Natural Science) (6): 140-152. | |
[34] | 祝振昌, 张利权, 肖德荣, 2011. 上海崇明东滩互花米草种子产量及其萌发对温度的响应[J]. 生态学报, 31(6): 1574-1581. |
ZHU Z C, ZHANG L Q, XIAO D R, 2011. Seed production of Spartina alterniflora and its response of germination to temperature at Chongming Dongtan,Shanghai[J]. Acta Ecologica Sinica, 31(6): 1574-1581. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn