[1] |
AVERY A M, WARING M S, DECARLO P F, 2019. Human occupant contribution to secondary aerosol mass in the indoor environment[J]. Environmental Science: Processes & Impacts, 21(8): 1301-1312.
|
[2] |
ALLISON J R, DOWSON C, PICKERING K, et al., 2022. Local exhaust ventilation to control dental aerosols and droplets[J]. Journal of dental research, 101(4): 384-391.
|
[3] |
ALMOHAMMED N, ALOBAID F, BREUER M, et al., 2014. A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas-solid spouted fluidized bed using Euler-Euler and Euler-Lagrange/DEM models[J]. Powder technology, 264: 343-364.
|
[4] |
GUO W Q, FU Y Y, JIA R, et al., 2022. Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward[J]. Environment international, 162(1): 107153.
|
[5] |
GE Y X, ABUDUWAILI J, MA L, et al., 2016. Temporal variability and potential diffusion characteristics of dust aerosol originating from the Aral Sea basin, central Asia[J]. Water, Air, & Soil Pollution, 227(2): 1-12.
|
[6] |
MARVAL J, TRONVILLE P, 2022. Ultrafine particles: A review about their health effects, presence, generation, and measurement in indoor environments[J]. Building and Environment, 216: 108992.
|
[7] |
PRUSSIN A J, MARR L C, 2015. Sources of airborne microorganisms in the built environment[J]. Microbiome, 3(1): 1-10.
|
[8] |
RUIZ-JIMENEZ J, OKULJAR M, SIETIO O, et al., 2021. Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols-seasonal variations, particle size distribution, chemical and microbial relations[J]. Atmospheric Chemistry and Physics, 21(11): 8775-8790.
|
[9] |
SODIQ A, KHAN M A, NASS M, et al., 2021. Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: Will an innovative air recirculation concept provide a practical solution?[J]. Environmental Research, 199: 111329.
|
[10] |
TANG J W, NOAKES C J, NIELSEN P V, et al., 2011. Observing and quantifying airflows in the infection control of aerosol-and airborne-transmitted diseases: An overview of approaches[J]. Journal of Hospital Infection, 77(3): 213-222.
|
[11] |
WU B, MENG K, WEI L M, et al., 2017. Seasonal fluctuations of microbial aerosol in live poultry markets and the detection of endotoxin[J]. Frontiers in Microbiology, 8: 551.
DOI
PMID
|
[12] |
ZHANG B, GUO G Y, ZHU C, et al., 2021. Transport and trajectory of cough-induced bimodal aerosol in an air-conditioned space[J]. Indoor and Built Environment, 30(9): 1546-1567.
|
[13] |
白红杰, 闫祥洲, 王丽英, 等, 2023. 4种通风模式对猪舍空气质量和猪只健康的影响[J]. 湖南农业科学, 52(6): 73-78.
|
|
BAI H J, YAN X Z, WANG L Y, et al., 2023. Effects of four ventilation modes on air quality and pig health in pig houses[J]. Hunan Agricultural Science, 52(6): 73-78.
|
[14] |
陈秋瑜, 杨思燕, 刘小虎, 等, 2019. 建筑环境视野下微生物研究现状浅析[J]. 西部人居环境学刊, 34(6): 79-85.
|
|
CHEN Q Y, YANG S Y, LIU X H, et al., 2019. An analysis of the current status of microbiological research in the perspective of built environment[J]. Journal of Western Habitat, 34(6): 79-85.
|
[15] |
关越, 2023. 病房内致病微生物气溶胶扩散分布的数值模拟研究[D]. 西安: 西安理工大学: 33-46.
|
|
GUAN Y, 2023. Numerical simulation of aerosol diffusion distribution of disease-causing microorganisms in hospital wards[D]. Xi’an: Xi’an University of Technology: 33-46.
|
[16] |
顾有林, 陈国龙, 胡以华, 等, 2022. 气溶胶沉降扩散研究进展(特邀)[J]. 红外与激光工程, 51(7): 11-21.
|
|
GU Y L, CHEN G L, HU Y H, et al., 2022. Advances in aerosol deposition and diffusion (Invited)[J]. Infrared and Laser Engineering, 51(7): 11-21.
|
[17] |
刘建伟, 任泽宁, 葛静芸, 等, 2023. 市政污水处理厂微生物气溶胶控制技术研究进展[J]. 北京工业大学学报, 49(12): 1-10.
|
|
LIU J W, REN Z N, GE J Y, et al., 2023. Progress of microbial aerosol control technology in municipal wastewater treatment plants[J]. Journal of Beijing Institute of Technology, 49(12): 1-10.
|
[18] |
李强, 2021. 空调系统送风方式影响空气污染物质量浓度分布实测研究[J]. 环境科学与管理, 46(3): 106-110.
|
|
LI Q, 2021. Measurement of the distribution of air pollutant quality concentration in air-conditioning systems affected by air supply mode[J]. Environmental Science and Management, 46(3): 106-110.
|
[19] |
李晓萍, 王雯翡, 康宁, 等, 2022. 开敞办公空间气溶胶传播的数值研究[J]. 建筑科学, 38(2): 209-216.
|
|
LI X P, WANG W F, KANG N, et al., 2022. Numerical study of aerosol propagation in open office space[J]. Building Science, 38(2): 209-216.
|
[20] |
栾一刚, 张力敏, 殷越, 等, 2022. 大型室内场所的通风结构优化与病毒扩散规律[J]. 环境工程, 40(12): 180-186.
|
|
LUAN Y G, ZHANG L M, YIN Y, et al., 2022. Optimisation of ventilation structure and virus diffusion pattern in large indoor places[J]. Environmental Engineering, 40(12): 180-186.
|
[21] |
苗露, 石硕, 2023. 电梯轿厢气溶胶颗粒弥散分布及通风方式研究[J]. 煤气与热力, 43(3): 25-31.
|
|
MIAO L, SHI S, 2023. Study on the dispersion distribution of aerosol particles and ventilation in lift car[J]. Gas and Heat, 43(3): 25-31.
|
[22] |
毛艳辉, 金阳丽, 王金晶, 等, 2022. 地铁车厢污染物分层稀释系统及病毒传染模型改进[J]. 科技通报, 38(2): 105-113.
|
|
MAO Y H, JIN Y L, WANG J J, et al., 2022. Hierarchical dilution system of pollutants in underground carriages and improvement of viral transmission model[J]. Science and Technology Bulletin, 38(2): 105-113.
|
[23] |
宋修教, 张悦, 程晓喜, 等, 2022. 平面空间划分对建筑自然通风性能影响的研究[J]. 南方建筑, 41(3): 56-63.
|
|
SONG X J, ZHANG Y, CHENG X X, et al., 2022. Research on the influence of plan space division on the natural ventilation performance of buildings[J]. Southern Architecture, 41(3): 56-63.
|
[24] |
吴国栋, 2021. 自然通风导向的城市公共建筑形体与空间组织设计研究[D]. 南京: 东南大学: 55-68.
|
|
WU G D, 2021. Research on natural ventilation oriented urban public building form and spatial organisation design[D]. Nanjing: Southeast University: 55-68.
|
[25] |
吴莉莉, 杨旭, 2008. 室内空气污染与人体健康关系研究进展[J]. 环境与健康杂志, 24(6): 551-553.
|
|
WU L L, YANG X, 2008. Progress of research on the relationship between indoor air pollution and human health[J]. Journal of Environment and Health, 24(6): 551-553.
|
[26] |
王廷路, 付红蕾, 李彦鹏, 等, 2016. 气流组织形式对室内微生物气溶胶的影响[J]. 环境工程学报, 10(6): 3084-3090.
|
|
WANG T L, FU H L, LI Y P, et al., 2016. Influence of airflow organisation form on indoor microbial aerosols[J]. Journal of Environmental Engineering, 10(6): 3084-3090.
|
[27] |
熊晓洁, 钟珂, 亢燕铭, 2007. 两种送风方式下室内空气污染物的质量浓度分布特征[J]. 中国科学院研究生院学报, 23(5): 590-596.
|
|
XIONG X J, ZHONG K, KANG Y M, 2007. Characteristics of indoor air pollutant mass concentration distribution under two air supply methods[J]. Journal of Graduate School of Chinese Academy of Sciences, 23(5): 590-596.
|
[28] |
熊鱼雅, 陈宏, 2021. 高层住宅单侧通风户型凹口位置对室内自然通风的影响研究[J]. 城市建筑, 18(14): 117-120.
|
|
XIONG Y Y, CHEN H, 2021. Research on the influence of the location of single-side ventilation household notch on indoor natural ventilation in high-rise residential buildings[J]. Urban Architecture, 18(14): 117-120.
|
[29] |
于学政, 韩云平, 曹英楠, 等, 2023. 人为源微生物气溶胶的分布特征及风险研究进展[J]. 微生物学通报, 50(2): 667-686.
|
|
YU X Z, HAN Y P, CAO Y N, et al., 2023. Distribution characteristics and risk of microbial aerosols from anthropogenic sources[J]. Microbiology Bulletin, 50(2): 667-686.
|
[30] |
战乃岩, 张帅, 高政, 等, 2019. 城市建筑布局对街区交通污染物扩散特征的影响[J]. 环境科学与技术, 42(12): 105-111.
|
|
ZHAN N Y, ZHANG S, GAO Z, et al., 2019. Impact of urban building layout on the dispersion characteristics of pollutants in neighbourhood traffic[J]. Environmental Science and Technology, 42(12): 105-111.
|
[31] |
周小军, 付莹莹, 王红昌, 等, 2022. 大气气溶胶微生物群落的分子生物学检测和监测方法的研究进展[J]. 中国生物制品学杂志, 35(7): 867-873.
|
|
ZHOU X J, FU Y Y, WANG H C, et al., 2022. Advances in molecular biology of atmospheric aerosol microbial communities and monitoring methods[J]. Chinese Journal of Biological Products, 35(7): 867-873.
|