生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 660-667.DOI: 10.16258/j.cnki.1674-5906.2023.04.003
周沁苑1,2,3(), 董全民1,2,3, 王芳草1,2,3, 刘玉祯1,2,3, 冯斌1,2,3, 杨晓霞1,2,3, 俞旸1,2,3, 张春平1,2,3, 曹铨1,2,3, 刘文亭1,2,3,*(
)
收稿日期:
2022-11-19
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*E-mail: qhdxlwt@163.com作者简介:
周沁苑(1999年生),女,硕士研究生,研究方向为草地生态与环境保护研究。E-mail: zhouqinyuan2021@163.com
基金资助:
ZHOU Qinyuan1,2,3(), DONG Quanmin1,2,3, Wang Fangcao1,2,3, LIU Yuzhen1,2,3, FENG Bin1,2,3, YANG Xiaoxia1,2,3, YU Yang1,2,3, ZHANG Chunping1,2,3, CAO Quan1,2,3, LIU Wenting1,2,3,*(
)
Received:
2022-11-19
Online:
2023-04-18
Published:
2023-07-12
摘要:
放牧是草地最基本的利用方式,放牧家畜通过践踏、采食、排泄等行为对草地土壤产生影响。有关放牧对团聚体及有机碳的研究目前主要集中于放牧强度的影响,但对于不同家畜混合放牧的研究相对较少。依托2014年建立的青藏托青藏高原高寒草地——家畜系统适应性管理技术平台,设置不放牧(对照)处理、藏羊单牧处理、牦牛单牧处理、牦牛藏羊1?2混牧处理,研究不同放牧方式下瑞香狼毒(Stellera chamaejasme)根际土壤团聚体组成和稳定性,有机碳含量及其贡献率。结果显示,(1)当土壤团聚体粒级在0-0.10 mm范围内时,各处理团聚体含量均高于不放牧处理,土壤团聚体粒级范围为0.10 mm以上时,各处理土壤团聚体含量均低于不放牧,且随着粒级增大,土壤团聚体含量降幅逐渐增大。(2)各放牧处理>0.25 mm粒级团聚体含量均低于不放牧处理,顺序为不放牧>牦牛藏羊1?2混合放牧>牦牛单牧>藏羊单牧。其中藏羊单牧与牦牛单牧下降显著。(3)藏羊单牧和牦牛单牧处理的土壤总有机碳含量高于不放牧处理,牦牛藏羊1?2混合放牧处理的土壤总有机碳含量低于不放牧处理。(4)放牧提高了0.10-0.25 mm粒级土壤团聚体有机碳含量,但其他粒级土壤团聚体有机碳含量无明显规律。(5)各放牧处理0.10 mm以下粒级土壤团聚体有机碳对土壤有机碳的贡献率均高于不放牧,0.10 mm以上粒级土壤团聚体有机碳对土壤有机碳的贡献率均低于不放牧。综上所述,放牧会增加瑞香狼毒根际土壤微团聚体有机碳含量,提高微团聚体有机碳对总有机碳的贡献率。
中图分类号:
周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667.
ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland[J]. Ecology and Environment, 2023, 32(4): 660-667.
处理1) | 牦牛数量/头 | 藏羊数量/只 | 小区面积/hm2 | 小区数 |
---|---|---|---|---|
Y | 1 | 0 | 0.260 | 3 |
S | 0 | 2 | 0.170 | 3 |
M | 1 | 2 | 0.430 | 3 |
CK | 0 | 0 | 0.050 | 3 |
表1 放牧试验设计
Table 1 Grazing experiment design
处理1) | 牦牛数量/头 | 藏羊数量/只 | 小区面积/hm2 | 小区数 |
---|---|---|---|---|
Y | 1 | 0 | 0.260 | 3 |
S | 0 | 2 | 0.170 | 3 |
M | 1 | 2 | 0.430 | 3 |
CK | 0 | 0 | 0.050 | 3 |
土壤团聚 体粒级/mm | CK 1) | S | Y | M |
---|---|---|---|---|
<0.05 | 26.5±3.36Ab 2) | 39.4±3.94Aa | 36.4±3.87Aa | 35.5±2.14Aa |
0.05-0.10 | 11.3±0.05Acd | 12.9±0.640Bc | 11.7±0.360ABb | 12.0±0.860ABb |
0.10-0.25 | 37.2±1.02Aa | 30.4±3.04Ab | 34.2±1.91Aa | 33.1±1.64Aa |
总和 | 75.0±2.31B | 82.7±1.58A | 82.2±3.72A | 80.7±2.54AB |
0.25-0.50 | 16.0±1.39Ac | 12.1±1.36Ac | 12.7±1.34Ab | 12.7±1.40Ab |
>0.50 | 9.07±1.07Ad | 5.24±1.28Ac | 5.12±0.840Ac | 6.63±1.39Ab |
总和 | 25.1±4.00A | 17.3±1.58B | 17.8±2.15B | 19.3±4.40AB |
表2 不同放牧方式土壤机械稳定性团聚体分布
Table 2 Distribution of soil mechanical stability aggregates %
土壤团聚 体粒级/mm | CK 1) | S | Y | M |
---|---|---|---|---|
<0.05 | 26.5±3.36Ab 2) | 39.4±3.94Aa | 36.4±3.87Aa | 35.5±2.14Aa |
0.05-0.10 | 11.3±0.05Acd | 12.9±0.640Bc | 11.7±0.360ABb | 12.0±0.860ABb |
0.10-0.25 | 37.2±1.02Aa | 30.4±3.04Ab | 34.2±1.91Aa | 33.1±1.64Aa |
总和 | 75.0±2.31B | 82.7±1.58A | 82.2±3.72A | 80.7±2.54AB |
0.25-0.50 | 16.0±1.39Ac | 12.1±1.36Ac | 12.7±1.34Ab | 12.7±1.40Ab |
>0.50 | 9.07±1.07Ad | 5.24±1.28Ac | 5.12±0.840Ac | 6.63±1.39Ab |
总和 | 25.1±4.00A | 17.3±1.58B | 17.8±2.15B | 19.3±4.40AB |
[1] |
DONG L, WANG J, LI J R, et al., 2022. Assessing the impact of grazing management on wind erosion risk in grasslands: A case study on how grazing affects aboveground biomass and soil particle composition in Inner Mongolia[J]. Global Ecology and Conservation, 40: e02344.
DOI URL |
[2] |
DONG Y Q, YANG H L, SUN Z J, et al., 2021. Difference of soil carbon density under different grazing exclusion duration in Seriphidium transiliense desert with distinct degrees of degradation[J]. Arid Land Research and Management, 35(2): 198-212.
DOI URL |
[3] |
FAN J L, JIN H, ZHANG C H, et al., 2021. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe[J]. Agriculture, Ecosystems & Environment, 313: 107387.
DOI URL |
[4] |
KPEMOUA T P I, BARRE P, CHEVALLIER T, et al., 2022. Drivers of the amount of organic carbon protected inside soil aggregates estimated by crushing: A meta-analysis[J]. Geoderma, 427: 116089.
DOI URL |
[5] |
LI L, ZHANG J, HE X Z, et al., 2021. Sheep trampling modifies soil and plant C꞉N꞉P stoichiometry in a typical steppe of the Loess Plateau[J]. Rangeland Ecology & Management, 76: 100-108.
DOI URL |
[6] |
LIU C L, LI W L, XU J, et al., 2021. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau[J]. Soil and Tillage Research, 206: 104822.
DOI URL |
[7] |
CHAI J L, YU X J, XU C L, et al., 2019. Effects of yak and Tibetan sheep trampling on soil properties in the northeastern Qinghai-Tibetan Plateau[J]. Applied Soil Ecology, 144: 147-154.
DOI URL |
[8] |
QIANG W, GUNINA A, KUZVAKOV Y, et al., 2023. Contributions of mycorrhizal fungi to soil aggregate formation during subalpine forest succession[J]. Catena, 221(Part A): 106800.
DOI URL |
[9] |
SILVEIRAL M L, XU S T, ADEWOPO J, et al., 2014. Grazing land intensification effects on soil C dynamics in aggregate size fractions of a Spodosol[J]. Geoderma, 230-231: 185-193.
DOI URL |
[10] |
SIX J, ELLIOTT E T, PAUSTIAN K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 32(14): 2099-2103.
DOI URL |
[11] | TISDALL J M, OADES J M, 1982. Organic matter and water-stable aggregates in soils[J]. The European Journal of Soil Science, 33(2): 141-163. |
[12] |
WEI Y Q, ZHANG Y J, WILSON G W T, et al., 2021. Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling[J]. Geoderma, 385: 114828.
DOI URL |
[13] |
YANG X X, DONG Q M, CHUN H, et al., 2019. Different responses of soil element contents and their stoichiometry (C꞉N꞉P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai-Tibetan Plateau’[J]. Agriculture, Ecosystems & Environment, 285: 106628.
DOI URL |
[14] |
鲍根生, 王玉琴, 宋梅玲, 等, 2019. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 28(3): 51-61.
DOI |
BAO G S, WANG Y Q, SONG M L, et al., 2019. Effects of Stellera chamaejasme patches on vegetation and soil physical and chemical properties of Stellera chamaejasme degraded grassland[J]. Acta Prataculturala, 28(3): 51-61. | |
[15] |
陈锦, 宋明华, 李以康, 2019. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 43(7): 576-584.
DOI |
CHEN J, SONG M H, LI Y K, 2019. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow[J]. Chinese Journal of Plant Ecology, 43(7): 576-584.
DOI |
|
[16] | 陈奇, 刘育红, 魏卫东, 2019. 退化紫花针茅草原土壤团聚体稳定性分析[J]. 环境科学与技术, 42(6): 35-43. |
CHEN Q, LIU Y H, WEI W D, 2019. Analysis on the stability of soil aggregates in the degraded Stipa purpurea steppe[J]. Environmental Science & Technology, 42(6): 35-43. | |
[17] | 程济南, 金辉, 许忠祥, 等, 2021. 甘肃典型高寒草原退化植物瑞香狼毒对根际土壤微生物群落的影响研究[J]. 微生物学报, 61(11): 3686-3704. |
CHEN J N, JIN H, XU Z X, et al., 2021. Effect of Stellera chamaejasme on Rhizosphere Soil Microbial Community in Gansu Typical Alpine Steppe Degraded Plant[J]. Journal of Microbiology, 61(11): 3686-3704. | |
[18] | 杜宝红, 高翠萍, 哈达朝鲁, 2018. 不同放牧强度对锡林郭勒典型草原生产力及碳储量的影响[J]. 水土保持研究, 25(1): 9. |
DU B H, GAO C P, HA D C L, 2018. Effects of different grazing intensities on productivity and carbon storage of typical grassland in Xilinguole[J]. Study on soil and water conservation, 25(1): 9. | |
[19] | 杜子银, 蔡延江, 王小丹, 等, 2019. 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展[J]. 生态学报, 39(13): 4627-4637. |
DU Z Y, CAI Y J, WANG X D, et al., 2019. Advances in studies on the degradation of grazing livestock manure and its effects on soil nutrient dynamics in grassland[J]. Journal of Ecology, 39(13): 4627-4637. | |
[20] | 韩国栋, 焦树英, 毕力格图, 等, 2007. 短花针茅草原不同载畜率对植物多样性和草地生产力的影响[J]. 生态学报, 27(1): 182-188. |
HAN G D, JIAO S H, BI L T G, et al., 2007. Effects of different stocking rates on plant diversity and grassland productivity in Stipa breviflora steppe[J]. Acta Ecologica Sinica, 27(1): 182-188. | |
[21] | 郭蓉, 郭亚洲, 王帅, 等, 2021. 中国天然草地有毒植物及其放牧家畜中毒病研究进展[J]. 畜牧兽医学报, 52(5): 1171-1185. |
GUO R, GUO Y Z, WANG S, et al., 2021. Advances in studies on toxic plants in natural grassland and poisoning diseases of grazing livestock in China[J]. Journal of Animal Husbandry and veterinary medicine, 52(5): 1171-1185. | |
[22] | 何念鹏, 韩兴国, 于贵瑞, 2011. 长期封育对不同类型草地碳贮量及其固持速率的影响[J]. 生态学报, 31(15): 4270-4276. |
HE N P, HAN X G, YU G R, 2011. Effects of long-term fencing on carbon storage and its sequestration rate in different types of grasslands[J]. Acta Ecologica Sinica, 31(15): 4270-4276. | |
[23] |
侯晓娜, 李慧, 朱刘兵, 等, 2015. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J]. 中国农业科学, 48(4): 705-712.
DOI |
HOU X N, LI H, ZHU L B, et al., 2015. Effects of biochar and straw addition on aggregate composition and organic carbon distribution in lime concretion black soil[J]. China Agricultural Sciences, 48(4): 705-712. | |
[24] | 贾丽英, 陈清, 张洛梓, 等, 2021. 放牧和围封对内蒙古羊草草原土壤团聚体理化性质的影响[J]. 天津师范大学学报: 自然科学版, 41(6): 40-45. |
JIA L Y, CHEN Q, ZHANG L Z, et al., 2021. Effects of grazing and enclosure on the physical and chemical properties of soil aggregates in Leymus chinensis steppe of Inner Mongolia[J]. Journal of Tianjin Normal University: Natural Science Edition, 41(6): 40-45. | |
[25] | 江仁涛, 李富程, 沈凇涛, 2018. 川西北高寒草地退化对土壤团聚体组成及稳定性的影响[J]. 水土保持研究, 25(4): 36-42. |
JIANG R T, LI F C, SHEN S T, 2018. Effects of alpine grassland degradation on soil aggregate composition and stability in northwestern Sichuan[J]. Study on Soil and Water Conservation, 25(4): 36-42. | |
[26] | 廖洪凯, 龙健, 李娟, 2012. 不同小生境对喀斯特山区花椒林表土团聚体有机碳和活性有机碳分布的影响[J]. 水土保持学报, 26(1): 156-160. |
LIAO H K, LONG J, LI J, 2012. Effects of different microhabitats on the distribution of organic carbon and labile organic carbon in topsoil aggregates of Zanthoxylum bungeanum forest in karst mountainous area[J]. Journal of Soil and Water Conservation, 26(1): 156-160. | |
[27] |
刘文亭, 王芳草, 杨晓霞, 等, 2022. 混合放牧对高寒草地矮生嵩草生殖枝与营养枝性状的影响[J]. 草地学报, 30(9): 2231-2238.
DOI |
LIU W T, WANG F C, YANG X X, et al., 2022. Effects of mixed grazing on reproductive branch and vegetative branch traits of Kobresia humilis in alpine grassland[J]. Grassland Journal, 30(9): 2231-2238. | |
[28] | 刘亚龙, 王萍, 汪景宽, 2023. 土壤团聚体的形成和稳定机制:研究进展与展望[J]. 土壤学报, 60(3): 627-643. |
LIU Y L, WANG P, WANG J K, 2023. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 60(3): 627-643. | |
[29] |
刘艳, 唐亚福, 杨越超, 等, 2022. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响[J]. 应用生态学报, 33(4): 1021-1026.
DOI |
LIU Y, TANG Y F, YANG Y C, et al., 2022. Effects of large-grained activated humic acid fertilizer on soil aggregates and organic carbon in apple orchard soil[J]. Chinese Journal of Applied Ecology, 33(4): 1021-1026.
DOI |
|
[30] |
刘咏梅, 赵樊, 何玮, 等, 2020. 退化高寒草甸狼毒发生区土壤真菌多样性的空间变异[J]. 应用生态学报, 31(1): 249-258.
DOI |
LIU Y M, ZHAO F, HE W, et al., 2020. Spatial variation of soil fungal diversity in Stellera chamaejasme occurrence area of degraded alpine meadow[J]. Applied Ecology, 31(1): 249-258. | |
[31] | 刘玉祯, 孙彩彩, 刘文亭, 等, 2022. 高寒草地植物群落关键种对不同放牧家畜组合放牧的响应[J]. 生态学报, 42(18): 7529-7540. |
LIU Y Z, SUN C C, LIU W T, et al., 2022. Response of keystone species changes in alpin grassland plant communities to different herbivore assemblage grazing[J]. Acta Ecologica Sinica, 42(18): 7529-7540. | |
[32] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agricultural Science and Technology Press. | |
[33] |
陆琪, 马红彬, 俞鸿千, 等, 2019. 轮牧方式对荒漠草原土壤团聚体及有机碳特征的影响[J]. 应用生态学报, 30(9): 3028-3038.
DOI |
LU Q, MA H B, YU H Q, et al., 2019. Effects of rotational grazing methods on soil aggregates and organic carbon characteristics in desert steppe. Chinese Journal of Applied Ecology, 30(9): 3028-3038.
DOI |
|
[34] | 牛钰杰, 杨思维, 王贵珍, 等, 2017. 放牧作用下高寒草甸群落物种分布与土壤因子的关系[J]. 应用生态学报, 28(12): 3891-3898. |
NIU Y J, YANG S W, WANG G Z, et al., 2017. Relation between species distribution of plant community and soil factors under grazing in alpine meadow[J]. Chinese Journal of Applied Ecology, 28(12): 3891-3898.
DOI |
|
[35] |
孙彩彩, 董全民, 刘文亭, 等, 2022. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 31(2): 62-75.
DOI |
SUN C C, D Q M, LIU W T, et al., 2022. Effects of grazing on soil arthropod community structure and diversity in alpine grassland of Qinghai-Tibet Plateau[J]. Pratacultural Journal, 31(2): 62-75. | |
[36] | 孙强, 杨旭, 孟军, 兰宇, 等, 2022. 生物炭对棕壤团聚体空间分布及有机碳的影响[J]. 农业环境科学学报, 41(11): 2515-2524. |
SUN Q, YANG X, MENG J, LAN Y, et al., 2022. Effects of biochar on spatial distribution and organic carbon of brown soil aggregates[J]. Journal of Agricultural Environmental Sciences, 41(11): 2515-2524. | |
[37] | 谭文峰, 朱志锋, 刘凡, 等, 2006. 江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点[J]. 自然资源学报, 21(6): 973-980. |
TAN W F, ZHU Z F, LIU F, et al., 2006. Distribution and accumulation of organic carbon in soil aggregates under different land use types in Jianghan Plain[J]. Journal of Natural Resources, 21(6): 973-980. | |
[38] | 薛冉, 郭雅婧, 苗福泓, 等, 2014. 短期放牧对高寒草甸土壤水稳性团聚体构成及稳定性的影响[J]. 水土保持通报, 34(3): 82-86, 91. |
XUE R, GUO Y J, MIAO F H, et al., 2014. Effects of short-term grazing on composition and stability of soil water-stable aggregates in alpine meadow[J]. Soil and water conservation bulletin, 34(3): 82-86, 91. | |
[39] | 于应文, 南志标, 2008. 畜尿排泄特征及其对草地植被和家畜选择采食的作用[J]. 生态学报, 28(2): 777-785. |
YU Y W, NAN Z B, 2008. Urinary excretion characteristics of livestock and their effects on grassland vegetation and selective feeding of livestock[J]. Journal of Ecology, 28(2): 777-785. | |
[40] |
张彬, 赵天启, 贺启珅, 等, 2022. 放牧对短花针茅荒漠草原土壤团聚体组成及稳定性的影响[J]. 应用生态学报, 33(12): 3263-3270.
DOI |
ZHANG B, ZHAO T Q, HE Q S, et al., 2022. Effects of grazing on composition and stability of soil aggregates in Stipa breviflora desert steppe[J]. Applied ecology, 33(12): 3263-3270. | |
[41] |
张维理, KOLBEH, 张认连, 2020. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 53(2): 317-331.
DOI |
ZHANG W L, KOLBEH, ZHANG R L, 2020. Research progress on the role and transformation mechanism of soil organic carbon[J]. China Agricultural Sciences, 53(2): 317-331. | |
[42] | 赵成章, 高福元, 盛亚萍, 等, 2011. 狼毒种群小尺度空间分布格局及空间关联性研究[J]. 干旱区地理, 34(3): 492-498. |
ZHAO C Z, GAO F Y, SHENG Y P, et al., 2011. Small-scale spatial distribution pattern and spatial association of Stellera chamaejasme populations[J]. Geography of arid areas, 34(3): 492-498. | |
[43] | 周华坤, 姚步青, 于龙, 2016. 三江源区高寒草地退化演替与生态恢复[M]. 北京: 科学出版社. |
ZHOU H K, YAO B Q, YU L, 2016. Degradation succession and ecological restoration of alpine grassland in Sanjiangyuan Region[M]. Biejing: Science Press. |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[3] | 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309. |
[4] | 朱生堡, 唐光木, 张云舒, 徐万里, 葛春辉, 马海刚. 水旱长期耕作下土壤团聚体及有机碳动态变化[J]. 生态环境学报, 2022, 31(11): 2152-2160. |
[5] | 宗宁, 石培礼, 朱军涛. 高寒草地沙化过程植物群落构成及生态位特征变化[J]. 生态环境学报, 2021, 30(8): 1561-1570. |
[6] | 夏梓泰, 程伟威, 赵吉霞, 李永梅, 范茂攀. 不同种植模式对玉米根系及土壤团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(12): 2331-2338. |
[7] | 杨洪炳, 肖以华, 李明, 许涵, 史欣, 郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系[J]. 生态环境学报, 2021, 30(10): 1976-1989. |
[8] | 刘红梅, 李睿颖, 高晶晶, 朱平, 路杨, 高洪军, 张贵龙, 张秀芝, 彭畅, 杨殿林. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277-1284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||