生态环境学报 ›› 2021, Vol. 30 ›› Issue (12): 2331-2338.DOI: 10.16258/j.cnki.1674-5906.2021.12.008
收稿日期:
2021-07-18
出版日期:
2021-12-18
发布日期:
2022-01-04
通讯作者:
*范茂攀(1977年生),男,副教授,博士,研究方向为土壤培肥与水土保持。E-mail: mpfan@126.com作者简介:
夏梓泰(1996年生),男,硕士研究生,研究方向为水土保持。E-mail: 1689283770@qq.com
基金资助:
XIA Zitai(), CHENG Weiwei, ZHAO Jixia, LI Yongmei, FAN Maopan(
)
Received:
2021-07-18
Online:
2021-12-18
Published:
2022-01-04
摘要:
通过田间试验设置玉米单作(MM)、玉米-苕子-玉米轮作(MVM)和玉米-豌豆-玉米轮作(MPM)3个处理,测定玉米各生育期根系特征、根系分泌物含量及土壤团聚体组成,以分析不同种植模式对玉米根系特征、根系分泌物及土壤团聚体稳定性的影响。结果表明:(1)MVM和MPM的玉米产量分别比MM显著提高10.6%和7.7%(P<0.05);(2)玉米根长、根表面积、根体积、根平均直径随生育期的推进而不断增加,且MVM和MPM处理在各生育期均高于MM处理;(3)各生育期MVM和MPM的总糖含量均显著高于MM(P<0.05),增幅为8.62%—36.12%,在抽雄期和成熟期,MVM和MPM的总有机酸含量显著高于MM处理(P<0.05),增幅为15.14%—17.92%;(4)各生育期MVM和MPM的0.25—2 mm团聚体含量均高于MM,且抽雄期MVM比MM显著提高27.88%(P<0.05),抽雄期MPM的>2 mm团聚体含量比MM显著提高22.59%(P<0.05),MVM和MPM的团聚体稳定性指标在抽雄期和成熟期显著高于MM(P<0.05);(5)相关性分析表明,土壤>0.25 mm团聚体、平均重量直径和几何平均直径与根平均直径、根表面积、根体积、总糖和总有机酸之间呈显著正相关(P<0.05)。该结果可为试验区域坡耕地水土流失的防治提供理论基础。
中图分类号:
夏梓泰, 程伟威, 赵吉霞, 李永梅, 范茂攀. 不同种植模式对玉米根系及土壤团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(12): 2331-2338.
XIA Zitai, CHENG Weiwei, ZHAO Jixia, LI Yongmei, FAN Maopan. Effects of Different Planting Patterns on Maize Root System and Soil Aggregate Stability[J]. Ecology and Environment, 2021, 30(12): 2331-2338.
处理 Treatment | 代号 Code | 种植方式 Planting method |
---|---|---|
玉米单作 Maize monocropping | MM | 第一年夏季种植玉米,冬季休闲,第二年夏季种植玉米 In the first year, maize is planted in summer, fallow in winter, and maize is planted in summer in the second year |
玉米-苕子-玉米轮作 Maize-vetch-maize rotation | MVM | 第一年夏季种植玉米,冬季种植苕子,第二年春季在苕子成熟期将其翻压到地里,当年夏季种植玉米 In the first year, maize is planted in summer and vetch in winter. In the spring of the second year, the vetch are pressed into the ground during the maturity period, and maize is planted in summer that year |
玉米-豌豆-玉米轮作 Maize-pea-maize rotation | MPM | 第一年夏季种植玉米,冬季种植豌豆,第二年春季在豌豆成熟期将其翻压到地里,当年夏季种植玉米 In the first year, maize is planted in summer and pea in winter. In the spring of the second year, the peas are pressed into the ground during the maturity period, and maize is planted in summer that year |
表1 试验处理
Table 1 Experiment treatment
处理 Treatment | 代号 Code | 种植方式 Planting method |
---|---|---|
玉米单作 Maize monocropping | MM | 第一年夏季种植玉米,冬季休闲,第二年夏季种植玉米 In the first year, maize is planted in summer, fallow in winter, and maize is planted in summer in the second year |
玉米-苕子-玉米轮作 Maize-vetch-maize rotation | MVM | 第一年夏季种植玉米,冬季种植苕子,第二年春季在苕子成熟期将其翻压到地里,当年夏季种植玉米 In the first year, maize is planted in summer and vetch in winter. In the spring of the second year, the vetch are pressed into the ground during the maturity period, and maize is planted in summer that year |
玉米-豌豆-玉米轮作 Maize-pea-maize rotation | MPM | 第一年夏季种植玉米,冬季种植豌豆,第二年春季在豌豆成熟期将其翻压到地里,当年夏季种植玉米 In the first year, maize is planted in summer and pea in winter. In the spring of the second year, the peas are pressed into the ground during the maturity period, and maize is planted in summer that year |
种植模式 Planting pattern | 冬季作物 Winter crops | 夏季作物 Summer crops | |||
---|---|---|---|---|---|
作物 Crop | 产量Yield/(kg∙hm-2) | 作物 Crop | 产量 Yield/(kg∙hm-2) | ||
MM | — | — | 玉米 Maize | 2412.02±92.64b | |
MVM | 苕子 Vetch | 495.54±157.69a | 玉米 Maize | 2668.09±112.63a | |
MPM | 豌豆 Pea | 455.66±205.96a | 玉米 Maize | 2598.21±89.54a |
表2 不同种植模式下作物产量
Table 2 Crop yield under different planting patterns
种植模式 Planting pattern | 冬季作物 Winter crops | 夏季作物 Summer crops | |||
---|---|---|---|---|---|
作物 Crop | 产量Yield/(kg∙hm-2) | 作物 Crop | 产量 Yield/(kg∙hm-2) | ||
MM | — | — | 玉米 Maize | 2412.02±92.64b | |
MVM | 苕子 Vetch | 495.54±157.69a | 玉米 Maize | 2668.09±112.63a | |
MPM | 豌豆 Pea | 455.66±205.96a | 玉米 Maize | 2598.21±89.54a |
生育期 Growth period | 种植模式 Planting pattern | 根长 Root length/m | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根平均直径 Average root diameter/mm |
---|---|---|---|---|---|
喇叭口期 Bell-mouthed period | MM | 3.26±0.11a | 795.44±69.19a | 17.70±0.78a | 0.57±0.07a |
MVM | 7.49±3.76a | 1263.95±504.54a | 17.91±4.58a | 0.74±0.04a | |
MPM | 5.07±1.74a | 923.22±216.00a | 14.30±4.00a | 0.63±0.16a | |
抽雄期 Tasseling period | MM | 9.78±0.58a | 1153.57±110.54b | 26.41±2.90b | 0.60±0.09b |
MVM | 15.10±5.29a | 1566.43±69.38a | 35.84±6.64ab | 1.08±0.05a | |
MPM | 11.15±3.68a | 1535.03±142.59a | 39.53±6.65a | 0.75±0.14b | |
成熟期 Mature period | MM | 24.78±1.97b | 2363.93±507.73a | 38.55±1.45b | 0.88±0.02b |
MVM | 32.84±2.44ab | 3271.93±109.18a | 96.11±11.19a | 0.91±0.13a | |
MPM | 34.76±2.18a | 2278.39±94.31a | 42.37±1.60b | 0.87±0.13b |
表3 不同种植模式下玉米各生育期根系特征
Table 3 Root system characteristics of maize in different growth periods under different planting patterns
生育期 Growth period | 种植模式 Planting pattern | 根长 Root length/m | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根平均直径 Average root diameter/mm |
---|---|---|---|---|---|
喇叭口期 Bell-mouthed period | MM | 3.26±0.11a | 795.44±69.19a | 17.70±0.78a | 0.57±0.07a |
MVM | 7.49±3.76a | 1263.95±504.54a | 17.91±4.58a | 0.74±0.04a | |
MPM | 5.07±1.74a | 923.22±216.00a | 14.30±4.00a | 0.63±0.16a | |
抽雄期 Tasseling period | MM | 9.78±0.58a | 1153.57±110.54b | 26.41±2.90b | 0.60±0.09b |
MVM | 15.10±5.29a | 1566.43±69.38a | 35.84±6.64ab | 1.08±0.05a | |
MPM | 11.15±3.68a | 1535.03±142.59a | 39.53±6.65a | 0.75±0.14b | |
成熟期 Mature period | MM | 24.78±1.97b | 2363.93±507.73a | 38.55±1.45b | 0.88±0.02b |
MVM | 32.84±2.44ab | 3271.93±109.18a | 96.11±11.19a | 0.91±0.13a | |
MPM | 34.76±2.18a | 2278.39±94.31a | 42.37±1.60b | 0.87±0.13b |
源 Source | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 根平均直径 Average root diameter | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||||
生育期 Growth period | 147.508 | 0.000 | 51.004 | 0.000 | 120.025 | 0.000 | 12.327 | 0.000 | |||
轮作 Crop rotation | 7.854 | 0.004 | 5.388 | 0.015 | 37.092 | 0.000 | 11.095 | 0.001 | |||
生育期×轮作 Growth period×Crop rotation | 1.718 | 0.190 | 0.607 | 0.663 | 29.290 | 0.000 | 3.734 | 0.022 |
表4 玉米生育期和轮作对根系特征的影响
Table 4 Effects of maize growth period and crop rotation on root characteristics
源 Source | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 根平均直径 Average root diameter | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||||
生育期 Growth period | 147.508 | 0.000 | 51.004 | 0.000 | 120.025 | 0.000 | 12.327 | 0.000 | |||
轮作 Crop rotation | 7.854 | 0.004 | 5.388 | 0.015 | 37.092 | 0.000 | 11.095 | 0.001 | |||
生育期×轮作 Growth period×Crop rotation | 1.718 | 0.190 | 0.607 | 0.663 | 29.290 | 0.000 | 3.734 | 0.022 |
图1 不同种植模式下玉米各生育期根系分泌总糖含量 图中字母表示不同种植模式下玉米根系分泌物含量差异显著(P<0.05),下同
Fig. 1 The content of total sugar secreted by the roots of maize in different growth periods under different planting patterns The letters in the figure indicate that the content of maize root exudates under different planting patterns is significantly different (P<0.05), the same below
图2 不同种植模式下玉米各生育期根系分泌总有机酸含量
Fig. 2 The content of total organic acid secreted by the roots of maize in different growth periods under different planting patterns
源 Source | 总糖 Total sugar | 总有机酸 Total organic acid | |||
---|---|---|---|---|---|
F | P | F | P | ||
生育期Growth period | 732.271 | 0.000 | 409.370 | 0.000 | |
轮作Crop rotation | 34.995 | 0.000 | 16.916 | 0.000 | |
生育期×轮作 Growth period× Crop rotation | 7.377 | 0.001 | 3.905 | 0.019 |
表5 玉米生育期和轮作对根系分泌物的影响
Table 5 Effects of maize growth period and crop rotation on root exudates
源 Source | 总糖 Total sugar | 总有机酸 Total organic acid | |||
---|---|---|---|---|---|
F | P | F | P | ||
生育期Growth period | 732.271 | 0.000 | 409.370 | 0.000 | |
轮作Crop rotation | 34.995 | 0.000 | 16.916 | 0.000 | |
生育期×轮作 Growth period× Crop rotation | 7.377 | 0.001 | 3.905 | 0.019 |
生育期 Growth Period | 种植模式 Planting pattern | 团聚体组成 Aggregate composition/% | R0.25/ % | RMWD/ mm | RGMD/ mm | ||
---|---|---|---|---|---|---|---|
>2 mm | 0.25—2 mm | <0.25 mm | |||||
喇叭口期 Bell-mouthed period | MM | 15.41±5.31a | 42.09±4.45a | 42.49±5.21a | 57.51±5.21a | 0.79±0.09b | 0.47±0.06a |
MVM | 20.77±3.50a | 46.56±9.50a | 32.67±6.00a | 67.33±6.00a | 0.93±0.02a | 0.59±0.06a | |
MPM | 19.87±1.51a | 46.61±2.98a | 33.53±2.21a | 66.47±2.21a | 0.91±0.02ab | 0.58±0.03a | |
抽雄期 Tasseling period | MM | 17.71±0.15b | 43.25±1.59b | 39.04±1.46a | 60.96±1.46b | 0.84±0.01b | 0.50±0.01b |
MVM | 17.18±1.00b | 55.31±2.21a | 27.51±1.78b | 72.49±1.78a | 0.94±0.02a | 0.64±0.02a | |
MPM | 21.71±2.32a | 46.93±3.83b | 31.37±1.79b | 68.63±1.79a | 0.95±0.02a | 0.61±0.02a | |
成熟期 Mature period | MM | 19.03±1.99a | 44.32±1.52a | 36.65±0.65a | 63.35±0.65b | 0.88±0.02b | 0.54±0.01b |
MVM | 21.83±321a | 50.82±5.11a | 27.35±2.41b | 72.65±2.41a | 0.99±0.02a | 0.66±0.03a | |
MPM | 24.27±1.79a | 44.66±2.64a | 31.07±2.30b | 68.93±2.30a | 0.98±0.03a | 0.62±0.03a |
表6 不同种植模式下玉米各生育期土壤团聚体特征
Table 6 Characteristics of soil aggregates in different growth periods of maize under different planting patterns
生育期 Growth Period | 种植模式 Planting pattern | 团聚体组成 Aggregate composition/% | R0.25/ % | RMWD/ mm | RGMD/ mm | ||
---|---|---|---|---|---|---|---|
>2 mm | 0.25—2 mm | <0.25 mm | |||||
喇叭口期 Bell-mouthed period | MM | 15.41±5.31a | 42.09±4.45a | 42.49±5.21a | 57.51±5.21a | 0.79±0.09b | 0.47±0.06a |
MVM | 20.77±3.50a | 46.56±9.50a | 32.67±6.00a | 67.33±6.00a | 0.93±0.02a | 0.59±0.06a | |
MPM | 19.87±1.51a | 46.61±2.98a | 33.53±2.21a | 66.47±2.21a | 0.91±0.02ab | 0.58±0.03a | |
抽雄期 Tasseling period | MM | 17.71±0.15b | 43.25±1.59b | 39.04±1.46a | 60.96±1.46b | 0.84±0.01b | 0.50±0.01b |
MVM | 17.18±1.00b | 55.31±2.21a | 27.51±1.78b | 72.49±1.78a | 0.94±0.02a | 0.64±0.02a | |
MPM | 21.71±2.32a | 46.93±3.83b | 31.37±1.79b | 68.63±1.79a | 0.95±0.02a | 0.61±0.02a | |
成熟期 Mature period | MM | 19.03±1.99a | 44.32±1.52a | 36.65±0.65a | 63.35±0.65b | 0.88±0.02b | 0.54±0.01b |
MVM | 21.83±321a | 50.82±5.11a | 27.35±2.41b | 72.65±2.41a | 0.99±0.02a | 0.66±0.03a | |
MPM | 24.27±1.79a | 44.66±2.64a | 31.07±2.30b | 68.93±2.30a | 0.98±0.03a | 0.62±0.03a |
源Source | R0.25 | RMWD | RGMD | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
生育期Growth period | 3.518 | 0.051 | 5.771 | 0.012 | 4.072 | 0.019 | ||
轮作Crop rotation | 17.077 | 0.000 | 20.044 | 0.000 | 22.451 | 0.000 | ||
生育期×轮作 Growth period× Crop rotation | 0.244 | 0.909 | 0.211 | 0.929 | 0.073 | 0.989 |
表7 玉米生育期和轮作对土壤团聚体稳定性的影响
Table 7 Effects of maize growth period and crop rotation on the soil aggregate stability
源Source | R0.25 | RMWD | RGMD | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
生育期Growth period | 3.518 | 0.051 | 5.771 | 0.012 | 4.072 | 0.019 | ||
轮作Crop rotation | 17.077 | 0.000 | 20.044 | 0.000 | 22.451 | 0.000 | ||
生育期×轮作 Growth period× Crop rotation | 0.244 | 0.909 | 0.211 | 0.929 | 0.073 | 0.989 |
因子 Factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
X1 | 1 | ||||||||
X2 | 0.890** | 1 | |||||||
X3 | 0.741** | 0.825** | 1 | ||||||
X4 | 0.505** | 0.554** | 0.465* | 1 | |||||
X5 | 0.846** | 0.809** | 0.764** | 0.611** | 1 | ||||
X6 | 0.895** | 0.831** | 0.767** | 0.580** | 0.971** | 1 | |||
X7 | 0.366 | 0.444* | 0.450* | 0.632** | 0.485* | 0.432* | 1 | ||
X8 | 0.502** | 0.544** | 0.502** | 0.483* | 0.537** | 0.535** | 0.866** | 1 | |
X9 | 0.433* | 0.507** | 0.505** | 0.622** | 0.527** | 0.487* | 0.986** | 0.926** | 1 |
表8 玉米根系与土壤团聚体稳定性相关性分析
Table 8 Correlation analysis of maize root system and soil aggregate stability
因子 Factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
X1 | 1 | ||||||||
X2 | 0.890** | 1 | |||||||
X3 | 0.741** | 0.825** | 1 | ||||||
X4 | 0.505** | 0.554** | 0.465* | 1 | |||||
X5 | 0.846** | 0.809** | 0.764** | 0.611** | 1 | ||||
X6 | 0.895** | 0.831** | 0.767** | 0.580** | 0.971** | 1 | |||
X7 | 0.366 | 0.444* | 0.450* | 0.632** | 0.485* | 0.432* | 1 | ||
X8 | 0.502** | 0.544** | 0.502** | 0.483* | 0.537** | 0.535** | 0.866** | 1 | |
X9 | 0.433* | 0.507** | 0.505** | 0.622** | 0.527** | 0.487* | 0.986** | 0.926** | 1 |
[1] |
BAUMERT V L, VASILYEVA N A, VLADIMIROV A A, et al., 2018. Root exudates induce soil macroaggregation facilitated by fungi in subsoil[J]. Frontiers in Environmental Science, DOI: 10.3389/fenvs.2018.00140.
DOI |
[2] |
BELL L W, SPARLING B, TENUTA M, et al., 2012. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland[J]. Agriculture, Ecosystems & Environment, 158: 156-163.
DOI URL |
[3] |
JIANG R, YANG J Y, DRURY C F, et al., 2021. Assessing the impacts of diversified crop rotation systems on yields and nitrous oxide emissions in Canada using the DNDC model[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2020.143433.
DOI |
[4] | LI F Q, XUE C, QIU P F, et al., 2018. Soil aggregate size mediates the responses of microbial communities to crop rotation[J]. European Journal of Soil Biology, European Journal of Soil Biology, 88: 48-56. |
[5] |
LOVERA L H, SOUZA Z M, ESTEBAN D A A, et al., 2021. Sugarcane root system: Variation over three cycles under different soil tillage systems and cover crops[J]. Soil and Tillage Research, DOI: 10.1016/j.still.2020.104866.
DOI |
[6] |
MIMMO T, DEL BUONO D, TERZANO R, et al., 2014. Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability[J]. European Journal of Soil Science, 65(5): 629-642.
DOI URL |
[7] |
NATH A J, LAL R, 2017. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north appalachian region, USA[J]. Pedosphere, 27(1): 172-176.
DOI URL |
[8] |
NAVEED M, BROWN L K, RAFFAN A C, et al., 2017. Plant exudates may stabilize or weaken soil depending on species, origin and time[J]. European Journal of Soil Science, 68(6): 806-816.
DOI URL |
[9] |
REBETZKE G J, KIRKEGAARD J A, WATT M, et al., 2014. Genetically vigorous wheat genotypes maintain superior early growth in no-till soils[J]. Plant and Soil, 377(1): 127-144.
DOI URL |
[10] |
SUN L, WANG S L, ZHANG Y J, et al., 2018. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use[J]. Agriculture, Ecosystems & Environment, 251: 67-77.
DOI URL |
[11] |
VAN HEES P A W, JONES D L, FINLAY R, et al., 2005. The carbon we do not see-The impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: A review[J]. Soil Biology and Biochemistry, 37(1): 1-13.
DOI URL |
[12] |
ZHAO H L, SHAR A G, LI S, et al., 2018. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research, 175: 178-186.
DOI URL |
[13] | 白录顺, 范茂攀, 王自林, 等, 2019. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系[J]. 水土保持研究, 26(1): 124-129. |
BAI L S, FAN M P, WANG Z L, et al., 2019. Relationship between root characteristics and aggregate stability in the field with maize and soybean intercropping[J]. Research of Soil and Water Conservation, 26(1): 124-129. | |
[14] | 官会林, 郭云周, 张云峰, 等, 2010. 绿肥轮作对植烟土壤酶活性与微生物量碳和有机碳的影响[J]. 生态环境学报, 19(10): 2366-2371. |
GUANG H L, GUO Y Z, ZHANG Y F, et al., 2010. Effect of green manure rotation soil enzyme activities and soil microbial biomass carbon and soil organic carbon in tobacco field[J]. Ecology and Environmental Sciences, 19(10): 2366-2371. | |
[15] | 韩云飞, 高日平, 任永峰, 等, 2020. 播期对毛叶苕子生长发育及产量的影响[J]. 作物杂志 (6): 151-157. |
HAN Y F, GAO R P, REN Y F, et al., 2020. Effects of sowing dates on growth and yield of hairy vetch[J]. Crops (6): 151-157. | |
[16] | 黄晶, 刘淑军, 张会民, 等, 2016. 水稻产量对双季稻-不同冬绿肥轮作及环境的响应[J]. 生态环境学报, 25(8): 1271-1276. |
HUANG J, LIU S J, ZHANG H M, et al., 2016. The Response of rice yields on long-term double cropping rice with different winter green manure rotation and environment[J]. Ecology and Environmental Sciences, 25(8): 1271-1276. | |
[17] | 姜英, 王峥宇, 廉宏利, 等, 2020. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 53(15): 3071-3082. |
JIANG Y, WANG Z Y, LIAN H L, et al., 2020. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in northeast China[J]. Scientia Agricultura Sinica, 53(15): 3071-3082. | |
[18] | 贾志红, 易建华, 苏以荣, 等, 2010. 烟区轮作与连作土壤细菌群落多样性比较[J]. 生态环境学报, 19(7): 1578-1585. |
JIA Z H, YI J H, SU Y R, et al., 2010. Diversity comparison of soil bacteria communities in rotation and continuous flue-cured tobacco cropping[J]. Ecology and Environmental Sciences, 19(7): 1578-1585. | |
[19] | 李强, 杨俊诚, 张加琼, 等, 2020. 植物根系抗侵蚀指标及模型研究进展[J]. 农业资源与环境学报, 37(1): 17-23. |
LI Q, YANG J C, ZHANG J Q, et al., 2020. Progress of research on soil erosion resistance of plant roots and future prospects[J]. Journal of Agricultural Resources and Environment, 37(1): 17-23. | |
[20] | 李帅, 王艳, 贾龙, 等, 2019. 山东省冬闲农田种植冬牧70压青后腐解及养分动态[J]. 生态环境学报, 28(11): 2239-2244. |
LI S, WANG Y, JIA L, et al., 2019. Dynamics of nutrients and decomposition of Dongmu 70 cultivated in winter fallow period in Shandong province[J]. Ecology and Environmental Sciences, 28(11): 2239-2244. | |
[21] | 李子双, 廉晓娟, 王薇, 等, 2013. 我国绿肥的研究进展[J]. 草业科学, 30(7): 1135-1140. |
LI Z S, LIAN X J, WANG W, et al., 2013. Research progress of green manure in China[J]. Pratacultural Science, 30(7): 1135-1140. | |
[22] | 刘昌永, 郭云周, 曾思洪, 等, 2016. 云南绿肥种植存在问题及对策[J]. 云南农业 (7): 84-85. |
LIU C Y, GUO Y Z, ZENG S H, et al., 2016. Problems and countermeasures of green manure planting in Yunnan province[J]. Yunnan Agriculture (7): 84-85. | |
[23] | 刘佳, 张杰, 秦文婧, 等, 2016. 红壤旱地毛叶苕子不同翻压量下腐解及养分释放特征[J]. 草业学报, 25(10): 66-76. |
LIU J, ZHANG J, QIN W J, et al., 2016. Decomposition and nutrient release characteristics of different Vicia villosa green manure applications in red soil uplands of south China[J]. Acta Prataculturae Sinica, 25(10): 66-76. | |
[24] | 刘均阳, 周正朝, 苏雪萌, 2020. 植物根系对土壤团聚体形成作用机制研究回顾[J]. 水土保持学报, 34(3): 267-273. |
LIU J Y, ZHOU Z C, SU X M, 2020. Review of the mechanism of root system on the formation of soil aggregates[J]. Journal of Soil and Water Conservation, 34(3): 267-273. | |
[25] | 刘涛, 蔡秋燕, 张锡洲, 等, 2016. 磷高效型野生大麦根系形态和根系分泌物对低水平植酸态有机磷的响应特征[J]. 植物营养与肥料学报, 22(6): 1538-1547. |
LIU T, CAI Q Y, ZHANG X Z, et al., 2016. Response characteristics in root morphology and root exretion of P-efficient wild barley exposured to low level of phytate-phosphorus[J]. Journal of Plant Nutrition and Fertilizer, 22(6): 1538-1547. | |
[26] | 刘玉华, 张立峰, 2006. 不同种植方式土地利用效率的定量评价[J]. 中国农业科学, 39(1): 57-60. |
LIU Y H, ZHANG L F, 2006. Quantitative evaluation of land use efficiency under different cropping patterns[J]. Scientia Agricultura Sinica, 39(1): 57-60. | |
[27] | 马瑞, 杨帅, 秦鑫, 等, 2020. 不同耕作措施及玉米生育期对黄壤坡耕地土壤团聚体稳定性的影响[J]. 长江科学院院报, 37(11): 46-51. |
MA R, YANG S, QIN X, et al., 2020. Effects of different tillage measures and maize growing seasons on soil aggregates’ stability in sloping yellow soil cropland[J]. Journal of Yangtze River Scientific Research Institute, 37(11): 46-51. | |
[28] | 马瑞, 郑子成, 王双, 等, 2020. 山地黄壤区玉米不同生育期土壤抗蚀性特征[J]. 农业工程学报, 36(19): 107-114. |
MA R, ZHENG Z C, WANG S, et al., 2020. Soil anti-erodibility at different growth stages of maize in hilly yellow soil areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(19): 107-114. | |
[29] | 马志鹏, 范茂攀, 陈小强, 等, 2016. 间作模式下作物根系与坡耕地红壤抗蚀性的关系[J]. 水土保持学报, 30(4): 68-73. |
MA Z P, FAN M P, CHEN X Q, et al., 2016. Study on root system and red soil anti-erodibility of slope farmland under intercropping of maize and soybean[J]. Journal of Soil and Water Conservation, 30(4): 68-73. | |
[30] | 潘福霞, 鲁剑巍, 刘威, 等, 2011. 不同种类绿肥翻压对土壤肥力的影响[J]. 植物营养与肥料学报, 17(6): 1359-1364. |
PAN F X, LU J W, LIU W, et al., 2011. Effect of different green manure application on soil fertility[J]. Plant Nutrition and Fertilizer Science, 17(6): 1359-1364. | |
[31] | 秦丽, 何永美, 王吉秀, 等, 2020. 续断菊与玉米间作的铅累积及根系低分子量有机酸分泌特征研究[J]. 中国生态农业学报 (中英文), 28(6): 867-875. |
QIN L, HE Y M, WANG J X, et al., 2020. Lead accumulation and low-molecular-weight organic acids secreted by roots in Sonchus asper L.-Zea mays L. intercropping system[J]. Chinese Journal of Eco-Agriculture, 28(6): 867-875. | |
[32] | 宋日, 刘利, 吴春胜, 等, 2009. 大豆根系分泌物对土壤团聚体大小和稳定性的影响[J]. 东北林业大学学报, 37(7): 84-86. |
SONG R, LIU L, WU C S, et al., 2009. Effect of soybean root exudates on soil aggregate size and stability[J]. Journal of Northeast Forestry University, 37(7): 84-86. | |
[33] | 王婷, 李永梅, 王自林, 等, 2018. 间作对玉米根系分泌物及团聚体稳定性的影响[J]. 水土保持学报, 32(3): 185-190. |
WANG T, LI Y M, WANG Z L, et al., 2018. Effects of intercropping on maize root exudates and soil aggregate stability[J]. Journal of Soil and Water Conservation, 32(3): 185-190. | |
[34] | 王志强, 黄国勤, 赵其国, 2017. 新常态下我国轮作休耕的内涵、意义及实施要点简析[J]. 土壤, 49(4): 651-657. |
WANG Z Q, HUANG G Q, ZHAO Q G, 2017. Brief analysis on connotation, significance and implementing essentials of rotation fallow under new normal in China[J]. Soils, 49(4): 651-657. | |
[35] | 吴宪, 张婷, 王蕊, 等, 2020. 化肥减量配施有机肥和秸秆对华北潮土团聚体分布及稳定性的影响[J]. 生态环境学报, 29(5): 933-941. |
WU X, ZHANG T, WANG R, et al., 2020. Effects of chemical fertilizer reduction combined with application of organic fertilizer and straw on fluvo-aquic soil aggregate distribution and stability in north China[J]. Ecology and Environmental Sciences, 29(5): 933-941. | |
[36] | 苑亚茹, 韩晓增, 李禄军, 等, 2011. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 25(6): 96-99. |
YUAN Y R, HAN X Z, LI L J, et al., 2011. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. Journal of Soil and Water Conservation, 25(6): 96-99. | |
[37] | 张达斌, 姚鹏伟, 李婧, 等, 2013. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 33(7): 2272-2281. |
ZHANG D B, YAO P W, LI J, et al., 2013. Effects of two years incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 33(7): 2272-2281.
DOI URL |
|
[38] | 张智勇, 董秀秀, 王绍明, 等, 2019. 不同连作障碍消减措施对新疆棉花根系形态生理特征的影响[J]. 应用与环境生物学报, 25(4): 918-925. |
ZHANG Z Y, DONG X X, WANG S M, et al., 2019. Influence of different control measures of continuous cropping obstacle on morphological and physiological characteristics of cotton roots in Xinjiang[J]. Chinese Journal of Applied and Environmental Biology, 25(4): 918-925. | |
[39] | 赵彩衣, 王媛媛, 董青君, 等, 2019. 不同水肥处理对苕子和后茬玉米生长及土壤肥力的影响[J]. 水土保持学报, 33(4): 161-166. |
ZHAO C Y, WANG Y Y, DONG Q J, et al., 2019. Influence of different irrigation and fertilization treatments on the growth of Viciavillosa Rothvar and later-cropping maize and soil fertility[J]. Journal of Soil and Water Conservation, 33(4): 161-166. | |
[40] | 赵其国, 滕应, 黄国勤, 2017. 中国探索实行耕地轮作休耕制度试点问题的战略思考[J]. 生态环境学报, 26(1): 1-5. |
ZHAO Q G, TENG Y, HUANG G Q. 2017. Consideration about exploring pilot program of farmland rotation and fallow system in China[J]. Ecology and Environmental Sciences, 26(1): 1-5. | |
[41] | 朱亚琼, 简大为, 郑伟, 等, 2020. 不同种植模式下豆科绿肥对土壤改良效果的影响[J]. 草业科学, 37(5): 889-900. |
ZHU Y Q, JIAN D W, ZHENG W, et al., 2020. Effects of improving soil fertility by planting different leguminous green manure plants under different mixed cropping patterns[J]. Pratacultural Science, 37(5): 889-900. | |
[42] | 周志明, 张立平, 曹卫东, 等, 2016. 冬绿肥-春玉米农田生态系统服务功能价值评估[J]. 生态环境学报, 25(4): 597-604. |
ZHOU Z M, ZHANG L P, CAO W D, et al., 2016. Appraisal of Agro-ecosystem Services in Winter Green Manure-spring Maize[J]. Ecology and Environmental Sciences, 25(4): 597-604. |
[1] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[2] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[3] | 姜超强, 李晨, 朱启法, 徐海清, 刘炎红, 沈嘉, 阎轶峰, 余飞, 祖朝龙. 皖南不同种植模式碳汇效应及经济效益评价[J]. 生态环境学报, 2022, 31(7): 1285-1292. |
[4] | 李成伟, 刘章勇, 龚松玲, 杨伟, 李绍秋, 朱波. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968. |
[5] | 韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419. |
[6] | 杨洪炳, 肖以华, 李明, 许涵, 史欣, 郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系[J]. 生态环境学报, 2021, 30(10): 1976-1989. |
[7] | 赵其国, 沈仁芳, 滕应, 李秀华. 中国重金属污染区耕地轮作休耕制度试点进展、问题及对策建议[J]. 生态环境学报, 2017, 26(12): 2003-2007. |
[8] | 赵其国, 滕应, 黄国勤. 中国探索实行耕地轮作休耕制度试点问题的战略思考[J]. 生态环境学报, 2017, 26(1): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||