生态环境学报 ›› 2021, Vol. 30 ›› Issue (5): 1060-1068.DOI: 10.16258/j.cnki.1674-5906.2021.05.019
侯素霞1(), 雷旭阳1,*(
), 张辉1, 丁淑杰1, 崔广宇2
收稿日期:
2021-01-26
出版日期:
2021-05-18
发布日期:
2021-08-06
通讯作者:
* 雷旭阳(1989年生),男,讲师,硕士,主要从事废水处理与污泥资源化方面的研究。E-mail:67227237@qq.com作者简介:
侯素霞(1981年生),女,副教授,硕士,主要从事废水与污泥处理方面的研究。E-mail:housxhb@foxmail.com
基金资助:
HOU Suxia1(), LEI Xuyang1,*(
), ZHANG Hui1, DING Shujie1, CUI Guangyu2
Received:
2021-01-26
Online:
2021-05-18
Published:
2021-08-06
摘要:
将城镇脱水污泥制成5 mm粒径颗粒分别在15、20、25 ℃条件下进行蚯蚓堆肥,利用三维荧光(EEM)考察了温度对蚯蚓堆肥处理城镇污泥过程腐熟程度的影响,并采用PCR-DGGE技术探究了不同温度条件下蚯蚓堆肥微生物种群结构的变化,旨在分析蚯蚓堆肥中的微生物种群结构的变化,进而验证污泥中腐殖酸类有机物熟化降解机理,并为蚯蚓堆肥处理城镇污泥实现工业化生产提供理论依据。EEM分析结果表明:在堆肥30 d时,堆肥系统中腐殖酸类物质已基本降解完全,且随着堆肥时间的延长,芳香类蛋白质一直在被蚯蚓和微生物所利用;同一时期随温度升高,蚯蚓吞食和系统内的微生物的协同增效作用能加快系统中DOM的降解效率、提高系统的矿化程度。依据PCR-DGGE技术测序结果可知:蚯蚓堆肥系统中微生物种群对于温度变化存在缓冲区间,当温度在15—20 ℃范围内变化时,细菌和真核微生物的种群多样性差异均较小;温度为25 ℃时,系统中细菌种群多样性降低,真核微生物种群多样性升高;堆肥结束时,3个温度组系统中共有细菌种群类别占系统中总细菌种群类别79%以上,共有真核微生物种群类别占系统总真核微生物种群类别75%以上,表明随着温度升高系统中主要微生物种群类别并未发生变化,仅共有微生物种群的相对数量发生了改变,且3个温度组系统中均以拟杆菌门(Bacteroidetes)和子囊菌门(Ascomycota)为优势种群,温度越高,相对数量越多,系统中易利用有机质所占比重小,系统更加稳定。
中图分类号:
侯素霞, 雷旭阳, 张辉, 丁淑杰, 崔广宇. 基于EEM与PCR-DGGE技术分析温度对蚯蚓堆肥处理城镇污泥的影响[J]. 生态环境学报, 2021, 30(5): 1060-1068.
HOU Suxia, LEI Xuyang, ZHANG Hui, DING Shujie, CUI Guangyu. Analysis of the Effect of Temperature on Vermicomposting of Municipal Sludge Based on EEM and PCR-DGGE[J]. Ecology and Environment, 2021, 30(5): 1060-1068.
指标 Physicochemical Parameters | 初始污泥 Initial Sludge | The Composting Products (60 d) | ||
---|---|---|---|---|
15 ℃ | 20 ℃ | 25 ℃ | ||
ω(OM)/% | 68.0±7.7 | 55.0±0.01 | 51.7±0.02 | 49.8±0.01 |
ω(DOC)/(g∙kg-1) | 16.69±2.32 | 12.88±1.66 | 13.98±2.31 | 7.60±1.29 |
γ/(µS∙cm-1) | 573±8.49 | 1035.5±2.04 | 1275.0±6.94 | 2100.0±16.32 |
ω(NH4+-N)/(mg·kg-1) | 7.36±0.08 | 64.99±0.76 | 107.32±0.23 | 296.20±2.90 |
ω(NO3--N)/(mg∙kg-1) | 10.26±2.0 | 219.91±45.15 | 285.10±9.10 | 1389.49±47.06 |
ω(MBC)/(g∙kg-1) | 105.61±10.60 | 15.63±0.98 | 8.50±0.18 | 6.71±1.08 |
DHA/[mg·g-1∙h-1] | 28.06±1.34 | 0.49±0.08 | 0.49±0.02 | 0.27±0.01 |
表1 实验用泥开始和结束时理化、生化指标
Table 1 Physicochemical parameters of the initial substrate and the composting products
指标 Physicochemical Parameters | 初始污泥 Initial Sludge | The Composting Products (60 d) | ||
---|---|---|---|---|
15 ℃ | 20 ℃ | 25 ℃ | ||
ω(OM)/% | 68.0±7.7 | 55.0±0.01 | 51.7±0.02 | 49.8±0.01 |
ω(DOC)/(g∙kg-1) | 16.69±2.32 | 12.88±1.66 | 13.98±2.31 | 7.60±1.29 |
γ/(µS∙cm-1) | 573±8.49 | 1035.5±2.04 | 1275.0±6.94 | 2100.0±16.32 |
ω(NH4+-N)/(mg·kg-1) | 7.36±0.08 | 64.99±0.76 | 107.32±0.23 | 296.20±2.90 |
ω(NO3--N)/(mg∙kg-1) | 10.26±2.0 | 219.91±45.15 | 285.10±9.10 | 1389.49±47.06 |
ω(MBC)/(g∙kg-1) | 105.61±10.60 | 15.63±0.98 | 8.50±0.18 | 6.71±1.08 |
DHA/[mg·g-1∙h-1] | 28.06±1.34 | 0.49±0.08 | 0.49±0.02 | 0.27±0.01 |
图2 16S rDNA(A)和18S rDNA(B)的DGGE指纹图谱
Fig. 2 DGGE fingerprint and its schematic representation of 16S rDNA(A) and 18S rDNA(B) at three different temperature conditions
图3 不同温度16S rDNA和18S rDNA的DGGE指纹图谱Shannon-Wiener指数
Fig. 3 Shannon-Wiener index of biodiversity on 16S rDNA and 18S rDNA at three different temperature conditions
图4 16S rDNA(a)和18S rDNA(b)的DGGE指纹图谱PCA分析图“△”:15 ℃组独有。“□”:25 ℃组独有。“*”:15 ℃组和20 ℃组共有。“+”:20 ℃组和25 ℃组共有。“●”:15 ℃组、20 ℃组和25 ℃组共有
Fig. 4 Principal components analysis of the microbial community on 16S rDNA (a) and 18S rDNA (b)“△”: 15 ℃ group particular. “□”: 25 ℃ group particular. “*”: 15 ℃ group and 20 ℃ group common. “+”: 20 ℃ group and 25 ℃ group common. “●”: 15 ℃ group, 20 ℃ group and 25 ℃ group common
[1] |
BALDRIAN P, VALÁŠKOVÁ V, 2008. Degradation of cellulose by basidiomycetous fungi[J]. FEMS Microbiology Reviews, 32(3): 501-521.
DOI URL |
[2] |
CASTILLO J M, ROMERO E, NOGALES R, 2013. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J]. Bioresource Technology, 146: 345-354.
DOI URL |
[3] |
CHEN Y X, ZHANG Y F, ZHANG Q J, et al., 2015. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting[J]. Environmental Science and Pollution Research, 22(21): 17161-17170.
DOI URL |
[4] |
DANON M, FRANKE-WHITTLE I H, INSAM H, et al., 2008. Molecular analysis of bacterial community succession during prolonged compost curing[J]. FEMS Microbiology Ecology, 65(1): 133-144.
DOI URL |
[5] | EDWARDS C A, LOFTT J R, 1977. Biology of earthworm[M]. London: Chapman & Hall. |
[6] |
ELVIRA C, SAMPEDRO L, DOMINGUEZ J, et al., 1997. Vermicomposting of wastewater sludge from paper-pulp industry with nitrogen rich materials[J]. Soil Biology and Biochemistry, 29(3): 759-762.
DOI URL |
[7] |
FU X Y, HUANG K, CHEN X M, et al., 2015a. Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthwormsBimastus parvus[J]. Bioresource Technology, 175: 646-650.
DOI URL |
[8] | FU X Y, HUANG K, CUI G, et al., 2015b. Dynamics of bacterial and eukaryotic community associated with stability during vermicomposting of pelletized dewatered sludge[J]. International Biodeterioration & Biodegradation, 104: 452-459. |
[9] |
GÓMEZ-BRANDÓN M, AIRA M, LORES M, et al., 2011. Changes in microbial community structure and function during vermicomposting of pig slurry[J]. Bioresource Technology, 102(5): 4171-4178.
DOI URL |
[10] | GUILLÉN F, MARTÍNEZ M J, GUTIÉRREZ A, 2005. Biodegradation of lignocellu-losics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. International Microbiology, 8: 195-204. |
[11] |
HUANG K, LI F, WEI Y, et al., 2014. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes[J]. Bioresource Technology, 170: 45-52.
DOI URL |
[12] |
KARIMI K, ZAMANI A, 2013. Mucor indicus: Biology and industrial application perspectives: A review[J]. Biotechnology Advances, 31(4): 466-481.
DOI URL |
[13] |
KEPPEN O I, BERG I A, LEBEDEVA N V, et al., 2008. Chlorobaculum macestae sp. nov., a new green sulfur bacterium[J]. Microbiology, 77(1): 69-77.
DOI URL |
[14] |
KOUBOVÁ A, CHROÑÁKOVÁ A, PIŽL V, et al., 2015. The effects of earthworms eisenia spp. on microbial community are habitat dependent[J]. European Journal of Soil Biology, 68: 42-55.
DOI URL |
[15] |
KUZYAKOV Y, FRIEDEL J K, STAHR K, 2000. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 32(11): 1485-1498.
DOI URL |
[16] |
LI Q, WANG X C, ZHANG H H, et al., 2013. Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures[J]. Bioresource Technology, 137: 270-277.
DOI URL |
[17] |
LI X W, XING M Y, YANG J, et al., 2013. Properties of biofilm in a vermifiltration system for domestic wastewater sludge stabilization[J]. Chemical Engineering Journal, 223: 932-943.
DOI URL |
[18] |
MATSUNAGA K, KUBOTA K, HARADA H, 2014. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18SrRNA gene analysis[J]. Microbes and Environments, 29(4): 401-407.
DOI URL |
[19] | MUNNOLI P M, 2015. Role of microbes in vermicomposting: A Review[M]//Bioprospects of Coastal Eubacteria. Switzerland: Springer International Publishing:241-262. |
[20] |
SAHA B C, 2004. Production, purification and properties of endoglucanase from a newly isolated strain of mucor circinelloides[J]. Process Biochemistry, 39(12): 1871-1876.
DOI URL |
[21] |
WAGNER M, LOY A, 2002. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 13(3): 218-227.
DOI URL |
[22] |
WARD N L, CHALLACOMBE J F, JANSSEN P H, et al., 2009. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Applied and Environmental Microbiology, 75(7): 2046-2056.
DOI URL |
[23] |
YAKUSHEV A V, BLAGODATSKY S A, BYZOV B A, 2009. The effect of earthworms on the physiological state of the microbial community at vermicomposting[J]. Microbiology, 78(4): 510-519.
DOI URL |
[24] | 曹先艳, 袁玉玉, 赵由才, 等, 2008. 温度对餐厨垃圾厌氧发酵产氢的影响[J]. 同济大学学报: 自然科学版, 36(7): 942-945. |
CAO X Y, YUAN Y Y, ZHAO Y C, et al., 2008. Temperature effect on bio-hydrogen production from kitchen waste[J]. Journal of Tongji University (Natural Science), 36(7): 942-945. | |
[25] | 陈迪, 赵洪颜, 葛长明, 等, 2015. 中药渣堆肥化过程中腐殖酸的动态变化研究[J]. 延边大学农学学报, 37(4): 292-295. |
CHEN D, ZHAO HY, GE C M, et al., 2015. Dynamics of humic acid during composting of chinese herbal medicine[J]. Agricultural Science Journal of Yanbian University, 37(4): 292-295. | |
[26] | 陈学民, 雷旭阳, 伏小勇, 等, 2016. 温度对蚯蚓处理颗粒污泥稳定化过程的影响[J]. 环境科学学报, 36(6): 2079-2084. |
CHEN X M, LEI X Y, FU X Y, et al., 2016. Effect of temperature on the stabilization process during vermicomposting of pelletized sludge[J]. Acta Scientiae Circumstantiae, 36(6): 2079-2084. | |
[27] | 陈学民, 黄魁, 伏小勇, 2010a. 微小双胸蚓处理城市污泥的试验研究[J]. 安全与环境学报, 10(2): 61-64. |
CHEN X M, HUANG K, FU X Y, 2010. Experimental study on vermicomposting of municipal sewage usingBimastus parvus[J]. Jounal of Safety and Environment, 10(2): 61-64. | |
[28] | 陈学民, 黄魁, 伏小勇, 等, 2010b. 2种表居型蚯蚓处理污泥的比较研究[J]. 环境科学, 31(5): 1274-1279. |
CHEN X M, HUANG K, FU X Y, et al., 2010b. Comparative studies on vermicomposting of sewage sludge with two epigeic earthworms[J]. Environment Science, 31(5): 1274-1279. | |
[29] | 陈学民, 王惠, 伏小勇, 等, 2010c. 赤子爱胜蚓处理污泥对其性质变化的影响[J]. 环境工程学报, 4(6): 1421-1425. |
HEN X M, WANG H, FU XY, et al., 2010c. Effect of vermicomposting usingEisenia foetida on properties if sewage sludge[J]. Chinese Jounal of Environmental Engineering, 4(6): 1421-1425. | |
[30] | 伏小勇, 崔广宇, 陈学民, 等, 2015. 蚯蚓处理对污泥中微生物碳量及脱氢酶活性的影响[J]. 环境科学学报, 35(1): 252-256. |
FU X Y, CUI G Y, CHEN X M, et al., 2015. Effects of earthworms on the microbial biomass carbon and dehydrogenase activity in decomposition treatment of sewage sludge[J]. Acta Scientiae Circumstantiae, 35(1): 252-256. | |
[31] | 郭昱廷, 彭剑峰, 宋永会, 等, 2012. 温度对ABR反应器处理效果和微生物群落结构的影响[J]. 环境科学学报, 32(7): 1542-1548. |
GUO Y T, PENG J F, SONG Y H, et al., 2012. Influence of temperature on the pollutant removal efficiency and the microbial community of the anaerobic baffled reactor[J]. Acta Scientiae Circumstantiae, 32(7): 1542-1548. | |
[32] | 管茂全, 周健, 覃光旭, 等, 2013. 老龄垃圾渗滤液中有机物与氮的同步降解研究[J]. 中国给水排水, 29(23): 23-26. |
GUAN M Q, ZHOU J, QIN G X, et al., 2013. Simultaneous degradation of refractory organic compounds and nitrogen in aged landfill leachate[J]. China Water & Wastewater, 29(23): 23-26. | |
[33] | 韩雅莉, 1993. 温度对大平二号赤子爱胜蚓呼吸的影响[J]. 动物学杂志, 28(4): 3-5. |
HAN Y L, 1993. Effect of temperature on the respiration ofEisenia fotida[J]. Chinese Journal of Zoology, 28(4): 3-5. | |
[34] | 何小松, 席北斗, 魏自民, 等, 2010. 堆放垃圾渗滤液水溶性有机物的荧光特性[J]. 中国环境科学, 30(6): 752-757. |
HE X S, XI B D, WEI L M, et al., 2010. Fluorescence characteristics of dissolved organic matter from dumped waste leachate[J]. Chinese Environmental Science, 30(6): 752-757. | |
[35] | 陆彦宇, 2017. 牛粪和中药渣堆肥化过程中水溶有机质特性及细菌结构的研究[D]. 南宁: 广西大学. |
LU Y Y, 2017. Study on the properties of dissolved organic matter and bacterial structure during compositing of dairy manure and Chinese herb residues[D]. Nanning: Guangxi University. | |
[36] | 李海青, 刘欣艳, 孙宇, 等, 2020. 生活垃圾焚烧厂渗滤液处理过程有机物特性分析[J/OL]. 环境科学与技术, 43(7): 154-159. |
LI H Q, LIU X Y, SUN Y, et al., 2020. Characteristic analysis of organic matter through treatment processes of leachate in a MSW incineration plant[J]. Environmental Science & Technology, 43(7): 154-159. | |
[37] | 孙振钧, 孙永明, 2004. 蚯蚓反应器与废弃物肥料化技术[M]. 北京: 化学工业出版社:34-35. |
SUN Z J, SUN Y M, 2004. Earthworm reactor and waste fertilizer technology[M]. Beijing: Chemical Industry Press:34-35. | |
[38] | 单光春, 2018. 餐厨垃圾堆肥化过程中水溶有机质组成及特性研究[D]. 南宁: 广西大学. |
DAN G C, 2018. Study on the properties and components of dissolved organic matter during composting of food waste and sugarcane leaves[D]. Nanning: Guangxi University. |
[1] | 付蓉, 武新梅, 陈斌. 城市地表温度空间分异及驱动因子差异性分析——以合肥市为例[J]. 生态环境学报, 2023, 32(1): 110-122. |
[2] | 蒋恬田, 杨纯, 廖炜, 胡力, 刘欢瑶, 任勃, 李小马. 城市绿地景观格局影响地表温度的通径分析——以长沙市为例[J]. 生态环境学报, 2023, 32(1): 18-25. |
[3] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[4] | 崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712. |
[5] | 雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应[J]. 生态环境学报, 2022, 31(6): 1151-1159. |
[6] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[7] | 李喆, 陈圣宾, 陈芝阳. 地表温度与土地利用类型间的空间尺度依赖性——以成都为例[J]. 生态环境学报, 2022, 31(5): 999-1007. |
[8] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[9] | 宋鑫博, 黄鹤, 郭军, 熊明明. 城市形态对夏季热环境影响研究——以天津中心城区为例[J]. 生态环境学报, 2021, 30(11): 2165-2174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||